透過您的圖書館登入
IP:13.59.9.236
  • 學位論文

探討Fe40Pd40B20薄膜的磁性、電性與光學性質

Magnetic, optical, and electrical properties of Fe40Pd40B20 thin-films

指導教授 : 劉文仁
共同指導教授 : 陳元宗(Yuan-Tsung Chen)

摘要


本實驗中,將鐵鈀硼(Fe40Pd40B20)靶材以直流磁控濺鍍(Direct Current Magnetron Sputtering)在玻璃基板(Glass Substrate)形成 Glass/Fe40Pd40B20(XÅ)樣品來進行磁性低頻交流導磁率(Low-frequency Alternative-current Magnetic Susceptibility, χac)和電性以及光學的探討。濺鍍在基板上的厚度分別為50 Å、100 Å、150 Å、200 Å、250 Å跟300 Å。利用X-ray繞射分析儀(X-ray Diffraction, XRD)鑑定薄膜晶體結構,由XRD圖可看出,在2θ約25。皆有明顯FePd (001)繞射峰,隨著膜厚增加FePd (001)的織構結構強度會越好。變頻磁導分析儀(XacQuan)探討其對低頻交流導磁率(Alternating-current magnetic susceptibility, χac)的影響、最大相位角(θmax)及最大χac值所對應的最佳共振頻率(fres),結果顯示出FePdB薄膜在膜厚為300 Å時χac在10 Hz有最大的振幅,這可推論為因為FePd (001)的織構結構所造成磁晶異向性(Magneto Crystalline Anisotropy)的關係,膜厚愈厚,χac量測出來的振幅愈大。以四點探針(Four-point Probe)量測濺鍍在玻璃基板上的鐵鈀硼薄膜,量測每個不同膜厚的電阻率(Resistivity)跟片電阻率(Sheet Resistivity) ,在膜厚為300 Å時有最小的電阻率約為0.0097 Ω.cm跟最小的片電阻率約為0.1025 Ω/cm2,這是因為厚度效應對電子散射的影響的關係,使得在膜厚愈厚的情況下,電阻率跟片電阻率會降低。再以微型光譜儀(Spectrometer)對Fe40Pd40B20薄膜進行穿透率跟反射率的量測。在穿透率測量的部分會發現膜厚愈小的情況下穿透率會較高,幾乎在80 %以上。而在厚度較厚的薄膜穿透率明顯地降低。因為光在穿透過薄膜的時候受到阻礙所呈現出薄膜的厚度效應。但是在反射率方面,呈現出隨著厚度愈厚其反射率愈高的趨勢,這跟穿透率所表現出來的情形是相反的。

關鍵字

none

並列摘要


In this study, FePdB thin-films were sputtered onto a glass substrate and their magnetic, electrical, and optical characteristics were investigated. X-ray diffraction (XRD) indicated that each Fe40Pd40B20 thin-films had a FePd (001) significant crystalline peak within 2θ of approximately 25。 at room temperature (RT). XRD demonstrated that thicker FePdB was more crystalline than thinner FePdB. The FePd (001) texture induced a magneto crystalline anisotropy, yielding the highest low-frequency alternative-current magnetic susceptibility (χac) and reducing electrical resistivity. The value of χac increased as the thickness increased because of magneto crystalline anisotropy. The maximal value of χac was obtained at a thickness of 300 Å at the optimal resonance frequency (fres) of 10 Hz, which produced maximal spin sensitivity. Moreover, the resistivity (ρ) and sheet resistance (Rs) reduced as the FePdB thickness increased, because grain boundaries and the thin-film surface scattered the electrons, therefore thinner films were more resistant. The 300 Å of thick FePdB exhibited a minimal ρ of approximately 0.009 Ω.cm and a minimal Rs of approximately 0.102 Ω/cm2. The transmission of FePdB thin-films showed that the thin FePdB exhibited a high transmittance of approximately 80%. Based on these results, the optimal FePdB thickness was 300 Å, yielding the highest χac value of approximately 0.54 with an fres of 10 Hz, a minimal q of approximately 0.009 Ω.cm, and a transmittance of approximately 55% because of a strong FePd (001) texture, which could be used in components for a magneto-optical recording medium.

並列關鍵字

none

參考文獻


[5]. 林夢嫺、何建新、賴志煌,“超越兆位元之磁性垂直記錄媒體”,科儀新知,第159期,2007年,第55-56頁。
[22]. 莊程豪,自旋量子井對交換偏耦合的影響,國立台灣大學碩士論文, 2003年。
[53]. 磁量生技股份有限公司,變頻磁導分析儀XacQuan操作與維修手冊,2008年。
[1]. J.M.D Coey, “Whither Magnetic Materials? ”, Journal of Magnetism and Magnetic Materials, vol.196-197, May 1999, pp.1-7.
[2]. B. Mike, S. Neaves and E. Smith, “Museum of Electricity and Magnetism”, US National High Magnetic Field Laboratory, 1995, pp.3-4.

延伸閱讀