透過您的圖書館登入
IP:3.141.152.173
  • 學位論文

常壓電漿及水熱混成技術沉積二氧化鈦膜層於染料敏化太陽能電池之應用研究

Study of TiO2 Films Synthesized Using Atmospheric Pressure Plasma and Hydrothermal Hybrid Technology for Dye Sensitized Solar Cell Application

指導教授 : 劉文仁

摘要


本實驗為使用自行開發、低成本、操作方便之常壓電漿噴流(Atmospheric Pressure Plasma Jet)金屬電極沉積系統,結合水熱法系統,於FTO透明導電玻璃上製作染料敏化太陽能電池(DSSC)之TiO2工作電極,搭配N719染料及含碘離子的電解液組裝成染料敏化太陽能電池元件,並以FE-SEM、XRD、XPS、UV-Vis、TEM進行膜層之各項材料分析。在常壓電漿噴流沉積第一層TiO2實驗過程中,已研究得知較佳的電漿功率、距離、溫度、主電漿氣體流量及前驅物流量參數,同時改變膜層沉積時間,以探討奈米樹狀結構的高度、密集性及空孔性之影響,目前研究成果顯示於30分鐘沉積時間下,其最佳光電轉換效率為12.08%;接著,結合水熱法製程製作第二層TiO2膜層,膜層前驅物分別使用鹽酸、二乙二醇、去離子水、異丙醇鈦及草酸鉀鈦等藥品,並在無添加任何表面活性劑下生長奈米多孔刺蝟狀與奈米棒結構;最後,進行第三層電漿鍍覆層,進而提升膜層對於染料的吸附量及較佳的電子傳遞性質,以達到提升光電轉換效率的目的,此實驗最佳光電轉換效率已達13.17%。本研究最佳製程參數下製作之三層膜層具備高比表面積之二氧化鈦奈米樹狀(TiO2 nano-dendrites, TNDs)及高準直性之二氧化鈦奈米棒(TiO2 nano-rods, TNRs)形態,其可大幅提高光電轉換效率。

關鍵字

none

並列摘要


Self-developed, low-cost and convenient-operation atmospheric plasma (AP) system and hydrothermal system were used to perform titanium oxide (TiO2) films synthesis on FTO substrates, and the application of DSSCs for adopting N719 dye and iodine ion electrolyte was also assessed. FE-SEM, XRD, XPS, UV-Vis and TEM were used to analyze the material analysis of the films. In-organic precursor (titanium tetraisopropoxide, TTIP) of AP system was used to form the 1st TiO2 layers and the effects of the deposition times on the characteristic and microstructure had been investigated. Up to date, the optimal TiO2 nano-dendrites (TNDs) revealed the best photo-conversion efficiency of 12.08% at the deposition time of 30min. Subsequently, the precursors of hydrothermal method which mixed with hydrochloric acid (HCl), DI water, diethylene glycol (DEG), titanium isopropoxide (TTIP) and K2TiO(C2O4)2 (PTO) were adopted to form the 2nd TiO2 layers. The 2nd layers revealed porous nano- hedgehogs and rods were synthesized without any addition of surfactant. Finally, the 3rd layer formation using AP deposition method, thus enhance the dye adsorption amount and the electron transfer properties to achieve the purpose to improve the photoelectric conversion efficiency, the photoelectric conversion efficiency reached optimum 13.17%. In this study, the three-layer films synthesized using optimum process parameters with a high specific surface area and well-aligned TNDs and TNRs (TiO2 nano-rods) morphology can significantly improve the photo-conversion efficiency.

並列關鍵字

none

參考文獻


[52]. 彭懷夫,中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,國立東華大學,2003年。
[87]. 林承賢,二氧化鈦摻釩的薄膜電極應用於染料敏化太陽能電池之研究,國立台南大學,2008年。
[115]. 黃思博,氧化鋅奈米柱與二氧化鈦之混合結構在染料感光型太陽能電池光陽極之應用,國立清華大學材料科學工程研究所,碩士論文,2009年。
[1]. S.A. Mozaffari, “An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC”, Materials Science in Semiconductor Processing, Vol.40, 2015, pp.285-292.
[2]. T.K. Yun, S.S. Park, D. Kim, Y.K. Hwang, S. Huh, J.Y. Bae, and Y.S. Won, “Mesoporous TiO2 anodes for efficient dye-sensitized solar cells,” Journal of Power Sources. Vol.196, 2011, pp.3678-3682.

延伸閱讀