透過您的圖書館登入
IP:18.119.128.99
  • 學位論文

基於簡易交通道路分層模型之車載最短路徑之研究

A Study of Shortest Route in Vehicular Networks Based on a Simple Road Hierarchy Model

指導教授 : 黃永發
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在現今智慧型運輸系統(Intelligent Transportation Systems, ITS)的蓬勃發展及全球定位系統(Global Positioning System,GPS)導航裝置的普遍應用,使得路徑規劃成為我們所依賴的功能,但在目前市區道路的交通流量中,各道路在同時段之行車速度差異極大,且並未考慮各路段在同時段之行車速度,造成到達時間與實際不符。 因此,本文提出簡易交通道路分層模型 (Simple Hierarchy Route Networks Model, SHRNM),依道路的等級、加上不同的行車速率及交通狀態,利用Dijkstra演算法來進行最快路徑搜尋,測試其可行性,並與Google Map之最快道路功能比較,最後以台中市交通道路進行模擬,來驗證所提出之道路模型之效益。由測試結果可知,用9個路徑作比較,得其平均平方誤差為9.5(min2)。

並列摘要


In the intelligent transportation systems (ITS) and the wide-spread Global Positioning System (GPS), the optimal shortest path algorithms is one of the important tools to be accepted in the commercial market. In the nowadays, the road networks in metropolitan are very complexity. To speed up the vehicles and shorten the arrival time for the drivers, the different speed limits of roads are developed for efficiently transportation systems. Therefore, in this thesis, a simplified hierarchy road network model (SHRNM) is proposed for the optimal shortest road route discovery for transportation systems in metropolitan area. The Dijkstra algorithms are applied for the optimal path calculation. In our model, the metric of shortest path is the driving time. Thus, the shortest path can easily be found in proposed simple road traffic model. Finally, to verify the feasibility of SHRNM, the shortest path for the Taichung transportation roads, is performed to compare with Google Map. From the results, the mean square error (MSE) between SHRNM and Google Map is 9.5 (min2) with 9 routes discovery.

參考文獻


[7] 蔡長俽,簡良益,GIS 系統建置理論與實務, 研勤科技,2004。
[5] 江寬,龔小鵬,Google API開發詳解 : Google Map與Google Earth
[12] D. Fan and P. Shi, “Improvement of Dijkstra’s Algorithm and Its
[13] I. Chabini and S. Lan, “Adaptations of the A* Algorithm for the Computation of Fastest Paths in Deterministic Discrete-time Dynamic Networks,” Proceedings of IEEE Transactions on Intelligent Transportation Systems, pp. 60-74, Mar. 2002.
[15] G. J. Shen, “An Intelligent Hybrid Forecasting Model for Short-term Traffic Flow”, Proceedings of the World Congress on Intelligent Control and Automation, pp. 486-491, July 2010.

延伸閱讀