透過您的圖書館登入
IP:18.217.116.183
  • 學位論文

垃圾焚化爐稀釋採樣之細懸浮微粒成份分析研究

Investigation of chemical composition of fine particulate from municipal solid waste incinerators by using dilution sampling method.

指導教授 : 楊錫賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用固定污染源稀釋採樣方法進行垃圾焚化爐細懸浮微粒採樣分析,採樣方法參照USEPA CTM-039,採樣期間同步以USEPA Method 201A與Method 202進行PM2.5採樣比較。本研究共進行4次重複採樣,除了進行煙道焚化爐PM2.5濃度差異比較,並探討PM2.5化學成分分析與排放特性,建立垃圾焚化爐PM2.5排放係數與指紋圖譜。 PM2.5稀釋採樣方法可將過濾性與凝結性PM2.5同時收集於一張濾紙上,濾紙所收集與稀釋管件中淋洗微粒重量加總即為煙道PM2.5濃度,本研究焚化爐稀釋採樣方法所採集之PM2.5 (過濾性PM2.5 + 凝結性PM2.5)濃度為11.1 ± 0.73 mg/Nm3。其中管件所淋洗PM2.5平均比例約佔40%,濾紙上平均佔總PM2.5的60%,主要原因為本研究所採集之煙道廢氣中PM2.5濃度相當低,濾紙所收集的PM2.5量不高的情況下,附著在管件的PM2.5比例相對變高。Method 201A/202所採集之過濾性PM2.5與凝結性PM2.5平均濃度分別為0.32 ± 0.04 mg/Nm3與30.7 ± 17 mg/Nm3,Method 202所採集之凝結性微粒變異不小。單以Method 201A所測得之過濾性PM2.5濃度遠低於稀釋採樣濃度,而Method 202所測得之凝結性PM2.5濃度相當高,Method 201A/202所採集的過濾性與凝結性PM2.5濃度加總為稀釋採樣所測得平均的2.78倍。以煙道內熱採樣法來看,凝結性PM2.5佔總PM2.5比例的98.7%,顯示若是焚化爐PM2.5的檢測未包含凝結性PM2.5部分,會使得焚化爐PM2.5排放被低估。本研究結果亦顯示凝結性PM2.5中無機組成佔了總CPM的90%,有機組成佔PM2.5為7.71%,其餘為鐵氟龍濾紙所收集之平均比例0.81%。 本研究焚化爐稀釋採樣方法PM2.5化學組成中,以碳成份平均所佔比例33.0%最高,其次為水溶性離子平均30.1%,以金屬元素所佔平均比例13.0%最低。Method 201A/202中以水溶性離子平均比例32.5%為最高,其次是碳成份平均比例21.4%,而金屬元素平均比例只佔了8.40%。稀釋採樣方法與Method 201A/202所測得過濾性與凝結性PM2.5排放係數分別為61.6 ± 4.52 g/ton、2.02 ± 0.23 g/ton與192 ± 112 g/ton,以Method 202測得凝結性PM2.5排放最高,且差異最大,主要是由水溶性離子排放係數影響所致。由本研究所建置之焚化爐指紋圖譜可得知,稀釋採樣特徵物種為EC、OC、Cl-、NH4+與Si;Method 201A/202所採集特徵物種為EC、OC、K+、Na+及Si,主要差異Cl-及NH4+會依照本身特性不同,以不同形式被收集,而金屬元素還是以K+、Na+及Si為主,與其焚化垃圾特性有關。

並列摘要


Dilution sampling technique (USEPA CTM-039) is applied for PM2.5 sampling from municipal solid waste incinerator in this study. In-stack hot sampling method (USEPA Method 201A and Method 202) is simultaneously used for PM2.5 measurement. PM2.5 concentrations are measured. In addition, chemical characteristics are investigated and the emission factors are established by the two sampling methods. The results show that PM2.5 concentration is 11.1 ± 0.73 mg/Nm3 by dilution sampling method. Filter collect 60% PM2.5; the other 40% is on the dilution wall and the accessories. This is due to the fact that the emission level is quite low and the percentage of particulate collected on the filter is low. The emission concentrations of filterable and condensable PM2.5 are 0.32 ± 0.04 mg/Nm3 and 30.7 ± 17 mg/Nm3, respectively. The variation of measurement results of condensable PM2.5 is significant. The results also show that filterable PM2.5 concentration is by Method 201A is significantly lower than PM2.5 concentration measured by dilution method. For condensable PM2.5, however, the concentration is high. Filterable + condensable PM2.5 concentration by in-stack method is higher than that of dilution method. The ratio is 2.78. For in-stack sampling, condensable PM2.5 accounts for 98.7% of total PM2.5. The results also indicate that inorganic fraction accounts for 90% of condensable PM2.5, inorganic fraction accounts for 7.71%, the others (0.81%) are collected on the backup filter. For dilution sampling method, carbon content accounts for 33% mass in PM2.5. The second is water soluble ions, which account for 30.1% and metals account for 13.0%. For in-stack sampling method, water soluble ions account for 32.5% of PM2.5. The second is carbon content, which accounts for 21.4% and metals account for 8.40%. Filter and condensable PM2.5 emission factors are 61.6 ± 4.52 and 2.02 ± 0.23 by in-stack method. PM2.5 emission factor is 192 ± 112 g/ton by dilution sampling method. The characteristic species are EC, OC, Cl-, NH4+and Si by dilution sampling method. For in-stack sampling method, characteristic species are EC, OC, K+, Na+and Si. The discrepancies are caused by the volatility of Cl- and NH4+. For metal elements, the major species are K+, Na+ and Si, which is caused by the solid waste incinerated.

參考文獻


Arsene, C., Olariu, R.I., Zarmpas, P., Kanakidou, M., Mihalopoulos, N., 2011. Ion composition of coarse and fine particles in Iasi, North-Eastern Romania: implications for aerosols chemistry in the area. Atmospheric Environment, 45, 906-916.
Birch, M.E., Gray, R.A., 1996. Elemmnetal carbon-based method for occupational monitoring of particulate diesel exhaust: metrology and exposure issues. Analyst, 121, 1183-1190.
Chang, C.Y., Wang, C.F., Mui, D.T., Chang, M.T., Chiang, H.L., 2009. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials, 165, 766-773.
Chang, S.Y., Fang, G.C., Chou, C.K., Chen, W.N., 2006. Source identification of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei basin during spring season of 2004. Chemosphere, 65, 792-801.
Chen, S.J., Hsieh, L.T., Tsai, C.C., Fang, G.C., 2003. Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days. Chemosphere, 53, 29-41.

延伸閱讀