透過您的圖書館登入
IP:18.221.146.223
  • 學位論文

環狀烯烴聚合物及無鹵難燃矽橡膠材料之製程開發

The Synthetic Process Development of Cyclic Olefin Polymer and Silicone Rubber Material

指導教授 : 曾瑞昌
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部分:環狀烯烴聚合物之材料製程開發 本研究以雙環戊二烯為原料,以高產物純度、簡便之操作及純化程序且具量產性為前提,經由羥基化、常溫氫化及酯化等關鍵反應,製備出甲基丙烯酸酯雙環戊烷(DCPMA),以作為光學環狀烯烴材料之單體化合物。其中雙環戊二烯水合反應之較佳條件為利用甲酸進行具立體選擇性及區位選擇性之加成反應,接續進行水解反應而得;氫化反應則以Pd/C作為催化劑,反應可於室溫之常壓系統下進行,反應條件溫和、便利且無須使用危險性較高之高壓反應器;至於關鍵之酯化反應以費雪酯化條件較為便利、經濟且具量產性。後續以甲基丙烯酸酯雙環戊烷作為單體化合物,以偶氮二異丁腈(AIBN)作為反應起始劑,經自由基聚合反應製備出聚甲基丙烯酸酯雙環戊烷(PDCPMA)。各合成中間體、DCPMA單體及聚合物PDCPMA均利用紅外線光譜、核磁共振光譜進行分析鑑定,並研究一系列不同製備條件之聚合物PDCPMA基本材料性質分析。實驗結果顯示聚合物PDCPMA之龐大雙環戊烷基可略為改善聚甲基丙烯酸甲酯(PMMA)之熱性質,其玻璃轉移溫度往較高溫度移動,提高聚合物分子鏈剛性,並限制高分子鏈的移動性。其最佳之聚合物PDCPMA製備條件,係利用0.1%當量AIBN於0.5 M濃度下製備而得。裂解汽油之五碳烯烴原料以往尚未被充分利用,經精煉分離之後,具有高度的開發利用價值,可應用於樹脂、橡膠及精細化學品等產品領域。 為降低高分子材料之可燃性,以增進其材料應用性與使用安全性,高安全性與高效能難燃劑材料之研發及需求,已是合成高分子材料最為重要之課題。有機矽難燃劑則為低毒性、防熔滴、發煙量低、具備高阻燃效率,且為環境友善之無鹵難燃劑。本研究欲開發之無鹵難燃矽橡膠材料合成目標,係為不含鹵素之有機矽橡膠難燃高分子13及14,結構其高分子主鏈之主要骨架為聚矽亞苯基矽氧烷,含矽支鏈取代基為甲基或乙烯基。 第二部分:無鹵難燃矽橡膠材料之製程開發 本研究已順利開發出矽橡膠目標聚合物13與14之製備流程,其中關於目標聚合物13及14之詳細反應操作步驟、反應條件優化、純化程序等細節,均已建立出具有再現性及量產參考性之製備流程。此外,由於合成所需之含矽起始物之採購成本較高,因此目前亦已針對合成策略中所使用之昂貴上游起始物完成自主合成之製程開發,其中包括雙矽烷醇15、雙矽烷23等單體化合物之製備流程,以提供合成製程所需,並為此類矽橡膠單體開發具延伸性的下游製程應用。針對有機矽橡膠難燃劑之合成研究、製程開發、光譜鑑定解析、聚合物分析及熱性質分析,並藉由完成此一系列不同官能基與不同分子量之矽橡膠合成,探討溫度對其材料結構之影響,以及其特殊之燃燒特性,以利未來進行量產製程開發,提供難燃劑產業實質應用價值。

並列摘要


First part: The Synthetic Process Development of Cyclic Olefin Polymer Dicyclopentadiene (DCPD) is a very important material for the manufacture of cyclic olefin monomers. The COP/COC products have the potential to replace the polycarbonate (PC) and/or poly(methyl methacrylate) (PMMA) resins, and can be used in the areas of optical, electronic, optical communication, biomedical and packaging materials. The objective for the thesis is to develop the synthetic pathway for the monomer of optical cyclic olefin material, e.g. dicyclopentanyl methacrylate (DCPMA). The radical polymerization product of DCPMA exhibits great potential for the preparation of highly refractive, highly thermal stable, and highly transparent material. The synthesis of target monomer DCPMA by using inexpensive DCPD as the starting material was proposed. The key reactions for the preparation of monomer DCPMA include hydroxylation, hydrogenation and esterification reactions. The reaction conditions of radical polymerization process, the thermal analysis and the spectral analysis of the polymer product PDCPMA has been successfully completed. Second part: The Synthetic Process Development of Silicone Rubber Material Conventional and widely used flame retardant materials, developed from halogenated or phosphorus-containing polymers, often generate significant amount of toxic and corrosive halogenated gases upon combustion. In order to prevent the generation of highly toxic chemicals during combustion and to maintain great flame retardancy, siloxane-based flame retarded polymers, with superior high temperature stability and low temperature flexibility, fit the need for developments of future flame retardant polymers and are currently one of the most important additives for flame retardant materials. Herewith, we present an improved practical synthesis of halogen-free silicone rubber materials containing alternating silphenylene and siloxane substructures, as well as the characterization information and thermal properties. The desired poly(silphenylene-siloxane) materials, synthesized from the corresponding phenylene disilanol and diaminosilanes, exhibit non-toxicity, non-dripping, low smoke, great high-temperature thermal stabilities and high molecular weights and can serve as good flame retardants or flame suppressants. In addition, we have established a more versatile and efficient procedure for the preparation of the desired poly(silphenylenesiloxane) materials and their starting materials with lower manufacture cost.

參考文獻


第一部分:環狀烯烴聚合物之材料製程開發
1. 亞洲石油化學會議報告。台灣中油公司,2016。
2. 石化業的景氣觀察與預測。工研院IEK,2016。
3. 五碳烯烴餾份應用與市場分析。台灣綜合研究院,2008。
4. 含側鏈液晶之COC高分子合成與特性之研究。正修技術學院,2002。

延伸閱讀