透過您的圖書館登入
IP:3.129.218.223
  • 學位論文

含雙苯甲醯氧基萘之芳香族聚酯醯胺及聚酯醯亞胺之合成與性質

SYNTHESIS AND PROPERTIES OF AROMATIC POLY(ESTER-AMIDE)S AND POLY(ESTER-IMIDE)S WITH BIS(BENZOYLOXY)NAPHTHALENE UNITS

指導教授 : 蕭勝輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文探討具有同分異構的六種新型含萘環及雙苯甲醯氧基的芳香族二胺單體及其衍生的芳香族聚酯醯胺及聚酯醯亞胺之合成與性質。 首先,我們利用萘環上為2,7-、1,5-及2,3-不同取代位置之二羥基萘分別與4-硝基苯甲醯氯及3-硝基苯甲醯氯進行縮合反應,得到二硝基化合物之後,再以觸媒氫化之還原方式成功地合成六種新型具酯基的二胺單體。我們再以這些二胺單體分別與各種芳香族二羧酸進行直接聚縮合反應,而成功地合成六種新型系列之芳香族聚酯醯胺。由於2,3-系列之聚酯醯胺薄膜容易脆裂,為了進一步改善其成膜能力,我們利用2,3-取代位置的二胺單體與4,4’-氧二苯胺以等莫耳比例混合,再與各種芳香族二羧酸進行直接聚縮合反應而形成共聚合物。這些聚酯醯胺之固有黏度值最大可達1.20 dL g-1,其中有部分聚酯醯胺可由其溶在DMAc中的溶液鑄成具透明、可撓曲性及強韌的薄膜。另外大部分的聚酯醯胺,尤其對於間位系列之聚合物而言,在極性非質子型溶劑如NMP及DMAc中具有優良的溶解性。在熱性質方面,從DSC的分析可知,大部分的聚酯醯胺均具有明顯的玻璃轉移溫度,其值介於179與237 oC之間,而從TGA熱分析之結果顯示,全部的聚酯醯胺均具有良好的熱穩定性,2,3-系列之聚酯醯胺在氮氣及空氣中的10 %重量損失溫度皆在325 oC以上,而2,7-及1,5-系列之聚酯醯胺則皆在400 oC以上。 另外,我們以前述六種二胺單體分別與六種芳香族二酸酐經由傳統的二步驟法合成六種新型系列之芳香族聚酯醯亞胺,二胺與二酐單體先進行聚加成之開環反應形成聚醯胺酸前驅物,再經由化學閉環而轉化成聚醯亞胺。為了進一步改善聚酯醯亞胺之成膜能力及溶解性,我們利用2,7-取代位置的二胺單體與6FDA和另一種二酸酐以等莫耳比例混合之二酐單體,或2,3-取代位置的二胺和4,4’-氧二苯胺以等莫耳比例混合之二胺單體與二酐單體,反應成共聚酯醯亞胺。在第一個步驟所製得的聚醯胺酸,其固有黏度值最大可達1.37 dL g-1,其中有一些聚酯醯亞胺可溶於DMAc,並可由其溶液鑄成具透明、可撓曲性、強韌及良好機械特性的薄膜。另外一些聚酯醯亞胺,尤其對於間位系列且源自於6FDA所衍生的聚合物而言,易溶於所有用來測試的有機溶劑中,包括極性較小的間甲酚及四氫呋喃。在熱性質方面,大部分的聚酯醯亞胺可由DSC分析法測到明顯的玻璃轉移溫度,其值介於225與295 oC之間,而從TGA熱分析之結果顯示,全部的聚酯醯亞胺均具有良好的熱穩定性,它們在氮氣及空氣中的10 %重量損失溫度皆在460 oC以上。 最後,我們利用熱裂解-氣相層析質譜分析法進行芳香族聚酯醯胺2,7-p-4a及聚酯醯亞胺2,7-p-7a之熱裂解研究,結果顯示這些聚合物鍵結的裂解最早是從酯基的分解開始,因而最先產生的熱裂解產物為2,7-二羥基萘。聚酯醯胺2,7-p-4a主鏈上之酯基鍵結大約在300 oC時最先發生裂解,而聚酯醯亞胺2,7-p-7a則大約在350 oC時才開始發生裂解,由此可見酯基是此類聚合物最弱的鍵結,而醯胺和醯亞胺鍵結則分別在400及450 oC時才開始裂解。此外,我們也以熱裂解-氣相層析質譜分析法探討新型含磷芳香族聚酯醯胺ODOP-PEA之熱裂解行為,結果發現DOPO懸掛基團和聚合物鏈之間的磷-碳鍵結大約在275 oC時即發生斷裂,顯示此磷-碳鍵結是ODOP-PEA最弱的鍵結,而在DOPO懸掛基團上的磷-氧鍵結則在300 oC時才發生斷裂。ODOP-PEA主鏈上之酯基鍵結則可穩定地達400 oC時才開始裂解,而醯胺鍵結的裂解則發生在超過400 oC以上。由熱裂解產物的結構進一步推導聚合物熱裂解之過程及化學鍵斷裂之次序。

並列摘要


This dissertation deals with the synthesis and characterization of six isomeric naphthalene ring-containing bis(ester-amine)s, 2,7-, 1,5-, and 2,3-bis(4-aminobenzoyloxy)naphthalenes (2,7-p-2, 1,5-p-2, and 2,3-p-2) and 2,7-, 1,5-, and 2,3-bis(3-aminobenzoyloxy)naphthalenes (2,7-m-2, 1,5-m-2, and 2,3-m-2), and their derived aromatic poly(ester-amide)s and poly(ester-imide)s. First, the diamine monomers with the bis(benzoyloxy)naphthalene unit were successfully synthesized from the condensation of 2,7-, 1,5-, and 2,3-naphthalenediol with 4-nitrobenzoyl chloride and 3-nitrobenzoyl chloride, respectively, followed by subsequent catalytic hydrogen reduction of the intermediate diester-dinitro compounds. Six series of novel aromatic poly(ester-amide)s were successfully synthesized by the direct phosphorylation polyamidation from these bis(ester-amine)s with various aromatic dicarboxylic acids. For the improvement of the film-forming capability of the 2,3-series poly(ester-amide)s, copolymers based on an equimolar mixture of 2,3-p-2 or 2,3-m-2 and 4,4’-oxydianiline with various dicarboxylic acids were also prepared. These poly(ester-amide)s were obtained in quantitative yields with inherent viscosities of up to 1.20 dL g-1. Some of these poly(ester-amide)s could be cast into transparent, flexible, and tough films from DMAc solutions. Most of these poly(ester-amide)s had excellent solubility in polar aprotic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide, especially for the meta-series polymers, and showed well-defined glass transition temperatures between 179 and 237 oC in the DSC traces. The TGA curves displayed that all of these poly(ester-amide)s had excellent thermal stability with 10 wt% loss temperatures above 325 oC for 2,3-series polymers and 400 oC for 2,7- and 1,5-series polymers in nitrogen or air. Second, six series of novel aromatic poly(ester-imide)s were also prepared from these bis(ester-amine)s with various commercially available aromatic tetracarboxylic dianhydrides via a conventional two-stage synthesis that included ring-opening polyaddition to give poly(amic acid)s followed by chemical imidization to polyimides. For improving film-forming capability and solubility, copolymers were also prepared from 2,7-substituted bis(ester-amine)s with an equimolar mixture of 6FDA and another dianhydride or an equimolar mixture of 2,3-substituted bis(ester-amine)s and 4,4’-oxydianiline with dianhydrides. The intermediate poly(amic acid)s obtained in the first stage had inherent viscosities of up to 1.37 dL g-1. Some of these poly(ester-imide)s, especially for the meta-series polymers derived from 6FDA, were soluble in all of the organic solvents tested including less polar m-cresol and THF at room temperature and could be solution-cast into transparent, flexible, and tough films with good mechanical properties. Most of these poly(ester-imide)s displayed a clear glass transition between 225 and 295 oC in the DSC traces. The TGA curves indicated that all of these poly(ester-imide)s showed excellent thermal stability with 10 wt% loss temperatures above 460 oC in nitrogen or air. Finally, the investigation of the thermal decomposition of the aromatic poly(ester-amide) 2,7-p-4a and poly(ester-imide) 2,7-p-7a using pyrolysis-gas chromatography/mass spectrometry (pyrolysis-GC/MS) showed that the early degradation of the ester groups produced 2,7-naphthalenediol as the major product, which initiated the polymer chain scission. The ester linkage within the polymer main chain disconnected first at approximately 300 oC for the 2,7-p-4a and 350oC for the 2,7-p-7a, indicating that it is the weakest bond. The cleavages of the amide and imide groups initially occurred at 400 and 450 oC, respectively. Furthermore, the thermal degradation behaviour of a novel phosphorus-containing aromatic poly(ester-amide) ODOP-PEA was also investigated by pyrolysis-GC/MS. The P-C bond linked between the pendant DOPO group and the polymer chain disconnected first at approximately 275 oC, indicating that it is the weakest bond in the ODOP-PEA. The cleavage of the P-O bond in the pendant DOPO group initiated at 300 oC. The ester linkage within the polymer main chain was stable up to 400 oC, and the amide group scission occurred at greater than 400 oC. The structures of the decomposition products were used to propose the degradation processes and elucidate the sequence of bond cleavage.

參考文獻


1. R. Hill and E. E. Walker, J. Polym. Sci., 3, 609 (1948).
2. P. W. Morgan, Chemtech, 9, 316 (1979).
4. P. M. Hergenrother, Die Angew. Markromol. Chem., 145, 323 (1986).
10. P. W. Morgan, Condensation Polymers by Interfacial and Solution Methods, New York: Interscience (1965).
11. W. J. Jackson and Tr. H. F. Kuhfuss, J. Appl. Polym. Sci., 25, 1685 (1980).

延伸閱讀