透過您的圖書館登入
IP:18.119.131.178
  • 學位論文

1 kW 甲醇水蒸氣重組器之性能研究

Performance Study of a 1 kW Methanol Steam Reformer

指導教授 : 張志雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究中,建立含蒸發系統之1kW甲醇蒸氣重組器,且對商業MDC-3觸媒進行甲醇蒸氣重組反應之性能研究,採用均勻設計(Uniform Design)方法佈置實驗點來提供豐富的資訊驗證模式。使用二階模式和前饋式類神經網路(Feedfoward Neural Network)模式得到在輸入值(水對甲醇莫耳比 [H2O]/[CH3OH]、反應溫度 T和觸媒量對甲醇進料量比 )和輸出值(氫氣產率 、甲醇轉化率 和氫氣產率 )之間的函數關係。求得確認模式性能統計上之數值,且得知對氫氣產量所提出的模式中4個節點的FNN模式能適當地解釋回叫值(recalls)和預測值的實驗數據。進行安排的實驗當中,操作條件為 [H2O]/[CH3OH]=1.5 、T=562K 和 FCH3OH=0.00386 mol/s 得到 FH2=9.25×10-3 mol/s足夠效率70%之1kW燃燒電池所需氫氣量(=9.24×10-3 mol/s)。

並列摘要


In this study, a 1kW methanol steam reformer including an evaporating system was set up to study the performance of the commercial MDC-3 catalyst in carrying out the methanol steam reforming reaction. The uniform design (UD) method was adopted to locate the experiments to provide the identified model with rich information. The second-order regression model and the feedforward neural network (FNN) model were used to give the mapping between the inputs (the mole ratio of [H2O]/[CH3OH], the reacting temperature T, and the catalyst loading over methanol feed rate ) and the outputs (the hydrogen production rate , the conversion of methanol , and the yield of hydrogen ). The capability of the identified model was evaluated statistically and among the proposed models, the FNN model with four hidden nodes was found to explain the experimental data suitably including the recalls and the predictions. During the experiments, hydrogen productivity ( FH2= 9.25×10-3 mol/s) was achieved at the condition FCH3OH=0.00386 mol/s, [H2O]/[CH3OH]=1.5 and T=562 K. This data proved that the built reactor system could provide a 1kW fuel cell with enough hydrogen consumption rate ( FH2=9.24×10-3 mol/s) if the fuel cell was operated at 70% efficiency.

並列關鍵字

Methanol Steam Reformer

參考文獻


1. Amphlett, J. C.; Evans, M. J.; Jones, R. A.; Mann, R. F.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 1: Thermodynamics. Can. J. Chem. Eng. 1981, 59, 720.
2. Amphlett, J. C.; Evans, M. J.; Weir, R. D. Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 2: Kinetics of Methanol Decomposition Using Girdier G66B Catalyst. Can. J. Chem. Eng. 1985, 63, 605.
3. Alejo, L.; Lago, R.; Pena, M. A.; Fierro, J. L. G. Partial Oxidation of methanol to produce hydrogen over Cu-Zn-base catalysts. Appl. Catal. A. 1997, 162, 281.
4. Agrell, J.; Birgersson, H.; Boutonnet, M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J. Power Sources. 2002, 106, 249.
5. Breen, J. P.; Ross, J. R. Methanol reforming for fuel-cell applications: development of ziaconia-containing Cu-Zn-Al catalysts. Catal. Today. 1999, 51, 521.

被引用紀錄


Kuo, L. W. (2006). 1kW甲醇水蒸氣重組器之實驗研究 [master's thesis, Tatung University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0081-0607200917235519

延伸閱讀