透過您的圖書館登入
IP:18.119.139.104
  • 學位論文

質子交換膜燃料電池之傳輸現象及最佳化設計研究

Study of Transport Phenomena and Optimal Design for Proton Exchange Membrane Fuel Cells

指導教授 : 鄭金祥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要探討質子交換膜燃料電池內部之傳輸現象與最佳參數分析,研究不同組件之電導率、孔隙率、厚度、與流道開口比的影響,並利用數值方法模擬二維陰極半電池之傳輸現象並據以決定最佳的參數設計。 研究中發現,電導率的影響以氣體擴散層最為明顯,選擇電導率較高的氣體擴散層材料會有效的提升電池性能。流道開口比λ的大小也會影響電池之性能,由結果得知,最佳之開口比例λ為0.65,此時的電池性能最佳。孔隙率的影響不僅是濃度擴散的效應,對有效電導率也會有所影響,由結果得知氣體擴散層之最佳孔隙率為0.6,而觸媒層之最佳孔隙率為0.5。在厚度方面,氣體擴散層的厚度愈薄會對整體的電池性能提升較多,觸媒層由於厚度比較薄,增加其厚度對提升電池的性能反而較不明顯。

並列摘要


The study is concerned with the transport phenomenon in a proton exchange membrane fuel cells(PEMFC) and the optimal parameter analysis。The research focus on the influences of different conductivities、channel ratioλ=lc/lb、porosity and thickness, numerical method is utilized to simulate the transport phenomenon in a 2-D half-cell model to obtain optimal parameters。 The results reveal that the GDL is most important for the influences of conductivity,so we can raise the cell performance effectively by choosing high conductivity of GDL materials。Channel ratioλ would also affect the cell performance,by the results,the optimal channel ratioλis 0.65 and reach a optimal performance。The influences of the porosity is not only the diffusivity of concentration but also the valuable conductivity,as the consequences,we can know that the optimal porosity of GDL is 0.6,and the optimal porosity of catalyst layer is 0.55。In thickness,when we decrease the thickness of GDL,we can get better performance for the cell,on the other hand,the thickness of catalyst layer is thinner,so decrease it’s thickness for raising the cell performance is not obvious。

參考文獻


1.Bernardi, D. M. and Verbrugge, M. W., " Mathematical Model of a Gas diffusion Electrode Bonded to a Polymer Electrolyte, "AICHE Journal, Vol. 37, pp. 1151-1163, 1991.
2.Singh, D., Lu, D. M. and Djilali, N., "A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells," Int. J. Engineering Science, Vol. 37, pp. 431-452, 1999.
3.Hsing, I. and Futerko, P. and Lindbergh, G., "Two-dimensional Simulation of Water Transport in Polymer Electrolyte Fuel cells, "Chemical Engineering Science, Vol. 55, pp.4209-4218.
4.Nguyen, T. V. and White, R. E., "A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells," J. Electrochem. Soc., Vol. 140, pp. 2178-2189, 1993.
5.Yi, J. S. and Nguyen, T. V., "An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells," J. Electrochem. Soc., Vol. 145, pp. 1149-1159, 1998.

被引用紀錄


鄭國良(2006)。燃料電池應用於生物醫學科技之可行性探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200600855
謝箕烈(2006)。微型燃料電池之功能性雙極板製作研究〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2006.00001
馬唯誠(2006)。質子交換膜燃料電池全電池數值模擬及參數分析〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-0607200917235533
郭建志(2009)。電動車與電池技術之發展趨勢與市場調查報告〔碩士論文,崑山科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0025-2708200912045700
葉名倧(2010)。燃料電池系統之陰極側進料方式探討〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315105223

延伸閱讀