透過您的圖書館登入
IP:52.14.236.216
  • 學位論文

含cardo複脂環及2,5-雙特丁基苯之 新型聚醯亞胺之合成及性質研究

SYNTHESIS AND PROPERTIES OF NOVEL POLYIMIDES CONTAINING CYCLIC CARDO OR 2,5-DI-TERT-BUTYLBENZENE GROUP

指導教授 : 楊金平
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部份中,一種新穎含CF3基團之二醚二胺5,5-Bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-4,7-methanohexa- hydroindan (2)是由5,5-bis(4-hydroxylhpenyl)-4,7-methanohexahydroindan和2-Chloro-5-nitrobenzotrifluoride之親核置換反應成二硝基化合物後,再以聯胺與Pd/C催化還原而成。2與各種二酐(3a-f)經常溫開環聚加成得PAA後,以化學或熱烤閉環法合成一系列之Polyimides 5a-f。此系列測得之固有黏度在0.64-0.86 dL/g之間,且所有PIs在amide型溶劑達10%以上可溶。測得5系列鑄膜之抗張強度介於93-117 MPa,斷裂伸長率介於7-17%,起始模數在2.0-2.8 GPa之間。5系列之玻璃轉移溫度介於255-307℃之間,而在氮氣與空氣中之10%重量損失皆在464℃以上及氮氣中800℃之熱重殘餘率皆在46%以上。5系列與未含氟之6系列比較,前者具有較低之介電常數(2.92-3.28 at 1 MHz)與吸濕率(0.15-0.43 wt%)以及薄膜色澤亦較色淡。第二部份中,一系列色淡兼具良好物性之poly(ether imide)s (PEIs)是由1,4-Bis(3,4-dicarboxyphenoxy)-2,5-di-tert- butylbenzene dianhydride (3’)與各種芳香族二胺 (4’a-k)經二步驟先在DMAc中開環聚加成polyamic acid (PAA),然後以熱烤法合成PEIs,此系列測得其PAA之固有黏度在1.00-1.53 dL/g之間,大部分之PEI較易溶於含氯溶劑如CHCl3、CH2Cl2等溶劑中,亦可溶於m-cresol,但對DMSO及amide型極性溶劑的溶解性較差。測得6’系列鑄膜之抗張強度介於93-118 MPa,斷裂伸長率介於7-18%,起始模數在2.0-2.5 GPa之間。6’系列之軟化點(Ts)及玻璃轉移溫度(Tg)介於216-279 ℃及232-285 ℃之間,在氮氣及空氣之10%重量損失皆在487 ℃以上。6’系列之介電常數與吸濕率分別在2.71-3.54 (1 MHz)與0.18-0.66%之間。6’系列之UV-visible光譜之Cutoff wavelength皆低於 385 nm及Colorimeter 之b*參數介於7.3-14.8之間,顯示出特別低著色性。第三部份中,一系列無色高透明易溶性及良好機械性質之聚醚醯亞胺是由1’4-Bis(3,4-dicarboxyphenoxy)-2,5-tert-butylbenzene dianhydride (3”)與各種含CF3基之芳香族二胺(4”a–h)經聚加成反應後,再以化學閉環法直接鑄膜而成,其固有黏度介於0.43-1.25 dL/g之間。6”系列較一般認為色淡之2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) PI-8”系列及近年來新穎之側鏈含CF3基團之二胺與6FDA所合成之PI-9”系列更為淡色,且經由UV-visible光譜之透光率及Colorimeter 之參數測得6”之Cutoff wavelength在 371-380 nm之間,b*參數值在3.7-6.6之間。6”系列具有極佳之溶解性,在N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, pyridine, tetrahydrofuran及dichloromethane 與 chloroform中皆達5-10%之可溶性。6”系列測得其機械性質之斷裂點抗張強度介於100-116 MPa,斷裂點伸長率介於8-20%,起始模數在2.0-2.2 GPa之間。其軟化溫度(Ts)與玻璃轉移溫度(Tg)介於219-284 ℃及230-305 ℃之間,在氮氣與空氣中10%重量損失在478 ℃以上。而介電常數在2.72-3.28 (1 MHz)間,及吸濕率範圍在0.15-0.46 wt% 之間。6”系列與未含氟之7”系列比較,前者具有較佳溶解性及色澤較淡。

並列摘要


First, a novel fluorinated bis(ether amine) monomer, 5,5-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-4,7-methanohexahy-droindan (2), was prepared through the nucleophilic aromatic substitution reaction of 5,5-bis-(4-hydroxylhpenyl)-4,7-methanohexahydroindan with 2-chloro-5-nitrobenzotrifluoride to yield the intermediate dinitro compound, followed by catalytic reduction with hydrazine and Pd/C. Polyimides (PIs, 5a-f) were synthesized from 2 and various aromatic dianhydrides (3a-f) using a standard two-stage process with chemical or thermal imidization of poly(amic acid). PI 5a-f had inherent viscosities ranging from 0.64 to 0.86 dL/g. All of PIs were soluble in amide-type solvents above 10% wt/V. These PI films had tensile strengths of 93-117 MPa, elongations to break of 7-17%, and initial moduli of 2.0-2.8 GPa. The glass transition temperatures of 5 were 255-307 ℃, and the 10% weight loss temperature was above 464 ℃, with their residues more than 46% at 800 ℃ in nitrogen. Compared with the nonfluorinated PI-6, 5 series was observed to have lower dielectric constants (2.92-3.28 at 1 MHz), lower moisture absorptions (0.15-0.43 wt%), and lower color intensity. Second, a series of poly(ether imide)s (PEIs) 6’a-k with light color and good physical properties were prepared from 1,4-bis(3,4-dicarboxypheoxy)-2,5-di-tert-butylbenzene dianhydride (3’) with various aromatic diamines (4’a-k) via a conventional two-stage procedure that included a ring-opening polyaddition to give poly(amic acid)s (PAAs), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00-1.53 dL/g. Most of PEIs showed excellent solubility in chloroinated solvents such like dichloromethane and chloroform and m-cresol, but not easily dissolved in dimethylsulfoxide and amide-type polar solvents. 6’ series had tensile strengths of 93-118 MPa, elongation at break of 7-18%, and initial moduli of 2.0-2.5 GPa. The softening temperatures (Ts) and the glass transition temperatures (Tg) of the 6’ series were recorded between 216-279 ℃ and 232-285 ℃, respectively. The decomposition temperatures for 10% weight loss all occurred above 487 ℃ in nitrogen or air. The 6’ series showed low dielectric constants (2.71-3.54 at 1 MHz), low moisture absorption (0.18-0.66 wt%), light-colored, with an cutoff wavelength below 385 nm and low yellow index (b*) values of 7.3-14.8. Third, a series of poly(ether imide)s (PEIs) 6”a-h characterized by colorlessness, high transparency, high solubility, and good mechanical properties, were synthesized from the aromatic dianhydride, 1,4-bis(3,4-dicarboxyphenoxy)-2,5-di-tert-butylbenzene dianhydride (3”) and various aromatic diamines 4”a-h with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct casted films. The PEI had inherent viscoseties in the range of 0.43-1.25 dL/g. The PEI of 6” series showed more colorless than the PIs of 2,2-bis(3,4-dicarboxyphenyl)hexa- fluoropropane dianhydride (6FDA)-derived 8” and 9” series, the latter being synthesized from the CF3-containing diamines with 6FDA. The films of 6” had cutoff wavelengths (λo) between 371 and 380 nm, as well as b* value (a yellowness index) ranging from 3.7 to 6.6. All of PEIs showed excellent solubility in organic solvents. They were soluble in N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, pyridine, tetrahydrofuran, even dichloromethane and chloroform at 5-10% wt/V. These PEI films showed tensile strengths of 100-116 MPa, elongations at break of 8-20%, initial moduli of 2.0-2.2 GPa. The softening temperatures and the glass transition temperatures of the 6” series were recorded between 219-284 ℃ and 230-305 ℃, respectively. The decomposition temperatures for 10% weight loss all occurred above 478℃. When compared with the corresponding nonfluorinated 7”, the 6” series showed better solubility and lighter color than the 7” series.

並列關鍵字

polyimide thermal imidization

參考文獻


3. Adadie, M. J. M. and Sillion, B., Eds., Polyimides and other High-Temperature Polymers; Elsevier: Amsterdam, 1991
6. Matsuura T, Ando S, Sasaki S, Yamamoto F (1993) Electron Lett 29:2107
7. Ando S, Sawada T, Inoue Y (1993) Electron Lett 29:2143
9. Yang CP, Chen RS, Chen KH (2003) J Polym Sci Part A Polym Chem 41:922
11. Imai Y (1995) High Perform Polym 7:337

延伸閱讀