透過您的圖書館登入
IP:3.129.218.144
  • 學位論文

在連續式裝置中氫氣滲透鈀膜管之研究

Study of Hydrogen Permeation through Palladium Membrane Tube in Continuous Device

指導教授 : 洪賑城
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用連續式氫氣滲透鈀膜管裝置(Continuous Device for Hydrogen Permeation through Palladium Membrane Tube),證實先前由半批次氫氣滲透鈀膜管裝置所獲得,在純氫氣或在氫氣及二氧化碳混合氣體中,氫氣滲透鈀膜之數學模式及其參數之可行性。 實驗結果顯示,在低進料速率時,純氫氣進料速率越大,滲透速率越大。當進料速率超過某一定值後,滲透速率即維持一常數,不隨進料速率之改變而改變。在高進料速率下,純氫氣之滲透速率隨溫度之升高而升高。此速率與先前由半批次裝置所測得之速率比較,結果顯示連續式裝置所測得之速率只有半批次裝置所測得速率之90%。原因可能是在連續式裝置中氫氣因流動而不易吸附在鈀膜管,或者鈀膜管已老化,造成氫氣滲透速率降低。 混合氣中之氫氣在連續式裝置中之滲透速率可由先前在半批次裝置中所測得之參數,配合本研究發展之公式算出。此計算值與實際利用連續式裝置測得之實驗值相差皆在5%以內,只有少數幾個低進料流量之數據為例外。 總而言之,本研究證實先前發展出之氫氣滲透鈀膜數學模式及其由半批次裝置所測得之參數,可以利用在連續式裝置中,而其誤差在10%以內。

並列摘要


A continuous device has been used in this study to prove the feasibility of a mathematical model derived from a semi-batch device for hydrogen permeation through palladium membrane tube with pure hydrogen or a gas mixture of hydrogen and carbon dioxide. Experimental results show that, at low feed flow rate, the rate of hydrogen permeation increases with increasing feed flow rate of pure hydrogen. When feed rate increases up to a certain value, the permeation rate keeps at a constant level. This permeation rate is about 90% of that obtained from semi-batch device. The possible reason is that hydrogen adsorption on palladium membrane in the continuous flow system is not as easy as that in semi-batch system, or the palladium membrane tube has decayed. The hydrogen permeation rate in the continuous device with gas mixture can be calculated from the model and parameters obtained from the semi-bath device. The difference between calculated and experimental values is less than 5%, with few exceptions at low feed rate. In summary, this study has proved that the mathematical model and parameters obtained from semi-batch device can be used in the continuous device with error less than 10%.

參考文獻


2. Armor, J. N. (1999). Appl. Catal. A, 176, 159.
5. Conner, W. C., & Falconer, J. L. (1995). Spillover in Heterogeneous Catalysis. Chem. Rev., 95, 759-788.
6. Lewis, F. A. (1995). Hydrogen in Palladium and Palladium Alloys. J. Hydrogen Energy, 21, 461-464.
7. Sylver, H., & Bruno, V. (1999). Relation between grain size and Hydrogen diffusion coefficient in an industrial Pd–23% Ag alloy. Solid State Ionics, 122, 51-57.
8. Collins, J. P., & Daniel, L. H. (1999). Eng. Chem. Res., 38, 1925-1936.

延伸閱讀