透過您的圖書館登入
IP:18.222.200.143
  • 學位論文

不需外加熱源之催化薄膜反應器生產氫氣之電腦模擬

Simulation of Pure Hydrogen Production in a Catalytic Membrane Reactor System without External Heat Source.

指導教授 : 洪賑城
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究發展出包含催化薄膜反應器、催化燃燒器、進料預熱器及空氣預熱器之催化薄膜反應器系統之數學模式。 在催化燃燒器和催化薄膜反應器、進料預熱器及空氣預熱器的能量平衡中,熱傳導及熱對流都被考慮進去以改進電腦模擬的可行性和準確性。模擬結果顯示對流阻力主宰了燃燒器與反應器系統各部份的熱傳。 藉由調整催化薄膜反應器與催化燃燒器中的觸媒密度,催化薄膜反應器的溫度分佈可控制在理想的範圍內(300℃-375℃),然而薄膜熱阻很大,導致燃燒器與反應器之間溫差極大。電腦模擬的結果顯示在不需外加熱源的狀況下氫氣的產率超過70﹪。

並列摘要


In this study, a mathematical model has been developed for a catalytic membrane reactor system (CMRS) including catalytic membrane reactor (CMR), catalytic combustor (CC), feed preheater (FP) and air preheater (AP). Both bulk conduction and film convection are considered in the energy balances between CC and CMR, FP or AP to improve the feasibility and accuracy of the computer simulation. Simulation results reveal that the film convection dominates the heat transfer between the combustor and the rest of the reactor system. By adjusting the density profiles of the reaction and combustion catalysts, the reactor temperature can be maintained at the desired value between 300℃ and 375℃. However, a large temperature difference exists between the combustor and reactor, due to the large film heat transfer resistance. Results of computer simulation show that hydrogen yield can be over 70% without external heat source.

參考文獻


1. Park, D. E., Kim, T., Kwon, S., Kim, C. K., & Yoon, E. (2007). Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells. Sensors and Actuators A, 135, 58–66.
2. Sopena, D., Melgar, A., Briceno, Y., Navarro, R. M., Alvarez-Galvan, M. C., & Rosa, F. (2007). Diesel fuel processor for hydrogen production for 5 kW fuel cell application. International Journal of Hydrogen Energy, 32, 1429 – 1436.
3. Gallucci, F., Paturzo, L., & Basile, A. (2004). Hydrogen recovery from methanol steam reforming in a dense membrane reactor: Simulation Study. Ind. Eng. Chem. Res., 43, 2420-2432
6. Tsotsis, T. T., Champagnie, A. M., Vasileiadis, S. P., Ziaka, Z. D., & Minet, R. G. (1993). The enhancement of reaction yield through the use of high temperature membrane reactors. Separation Science and Technology, 28, 397.
8. Lin, Y. M., & Rei, M. H. (2001). Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catalysis Today, 67, 77-84.

延伸閱讀