透過您的圖書館登入
IP:3.144.27.199
  • 學位論文

主鏈具三苯胺結構及側鏈含脂肪胺基團之 聚醯胺與聚醯亞胺的合成與性質探討

Synthesis and Characterization of Polyamides and Polyimides with Main-chain Triphenylamine Units and Pendent Alkylamine Groups

指導教授 : 蕭勝輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文包含二個研究主題,第一部分在描述在主鏈上含有 4-piperidinotriphenylamine [(Pi)TPA] 基團之新穎芳香族聚醯胺及聚醯亞胺之合成與性質探討。一種由六氫啶(piperidine) 所衍生的新型含三苯胺結構的二胺單體4,4’-diamino-4”-piperidinotriphenylamine 是在氟化銫共存下由4-piperidinoaniline和4-fluoronitrobenzene 進行芳香親核取代反應,然後再以聯胺和鈀觸媒催化還原二硝基中間產物而製得。具有[(Pi)TPA] 基團之非晶型及有機可溶性之聚醯胺是由芳香族或脂肪族二羧酸和上述所合成出之二胺進行磷酸化聚縮合反應而製得。聚醯亞胺是由二胺與二酐先行開環聚加成反應成聚醯胺酸後再利用加熱或化學脫水劑脫水環化而得。所有聚醯胺均很容易溶解在極性的有機溶劑中,並可經由它們的溶液塗佈鑄成可撓曲性及強軔的薄膜。這些聚合物具有高的玻璃態轉移溫度(Tg),其值約在252與318 ℃之間,它們亦具備很好的熱安定性,聚醯胺可耐熱至400 ℃以上,聚醯亞胺可耐熱至500 ℃以上。這些聚合物在紫外 (UV) 光區的最大吸收值約介於296與366 nm之間。這些聚合物在NMP的溶液(10-5 M) 光激發光譜顯示它們的最大放光強度的波長在387與449 nm之間,屬於藍光區,其螢光效率(ΦF) 最高可達3.57 %。電洞傳輸與電致變色特性是由電化學及光譜電化學方法測得。塗佈在ITO玻璃上的聚醯胺薄膜,在氰甲烷溶液中的循環伏安圖顯示出在0.44-0.49 與 0.80-0.88 伏特之間具有兩對可逆的氧化還原峰。大部分聚醯胺薄膜具有穩定的電致變色特性,電極的施加電壓從0.00升至1.20伏特的過程中,薄膜的顏色可從中性態的無色或是淡黃色轉化變成氧化態的綠色與藍色。這些聚合物薄膜顯示出可逆的電化學氧化還原程序,並伴隨著明顯的顏色變化、高變色效率、高對比、與快速的反應時間。中性態及完全氧化態的薄膜在波長636 nm的光學穿透率變化達到83 %。由於它們具有 (Pi)TPA的成分,這些聚合物亦顯示出低的離子化電位。塗佈在ITO玻璃上的聚醯胺薄膜在氰甲烷溶液中的循環伏安圖顯示起始氧化電位約在0.27伏特左右。 本論文的第二部分是在探討主鏈上含有 4-morpholinotriphenylamine [(Mo)TPA] 基團之新穎芳香族聚醯胺及聚醯亞胺之合成與性質。一種由嗎林(morpholine) 所衍生的新型含三苯胺結構的二胺單體4,4’-diamino-4”-morpholinotriphenylamine是在氟化銫共存下由4-morpholinoaniline和4-fluoronitrobenzene 進行芳香親核取代反應,然後再以聯胺和鈀觸媒催化還原二硝基中間產物而製得。所有的聚醯胺均很容易溶解在極性的有機溶劑中,並可經由它們的溶液塗佈鑄成可撓曲性及強軔的薄膜。這些聚合物具有高的玻璃態轉移溫度(Tg),其值約在260與313 ℃之間,它們亦具備很好的熱安定性,聚醯胺可耐熱至450 ℃以上,聚醯亞胺可耐熱至550 ℃以上。這些聚合物在UV光區的最大吸收值約在295與372 nm之間。它們在NMP的溶液(10-5 M) 光激發光譜顯示最大放光強度的波長在376與452 nm之間,屬於藍光區,其螢光效率(ΦF) 最高可達4.85 %。聚合物的電洞傳輸與電致變色特性是由電化學及光譜電化學方法測得。塗佈在ITO玻璃上的聚醯胺薄膜,在氰甲烷溶液中的循環伏特法顯示出在0.50-0.56 與 0.88-0.93 伏特之間具有兩對可逆的氧化還原峰。大部分聚醯胺薄膜具有穩定的電致變色特性,電極的施加電壓從0.00升至1.20伏特的過程中,薄膜的顏色可從中性態的無色或是淡黃色轉化變成氧化態的綠色與藍色。這些聚合物薄膜顯示出可逆的電化學氧化還原程序,並伴隨著明顯的顏色變化、高變色效率、高對比、與快速的反應時間。中性態及完全氧化態的薄膜在波長650 nm的光學穿透率變化可以達到90 %。由於它們具有(Mo)TPA的成分,這些聚合物亦顯示出低的離子化電位。塗佈在ITO玻璃上的聚醯胺薄膜在氰甲烷溶液中的循環伏安圖顯示起始氧化電位約在0.36伏特左右。

關鍵字

聚醯胺 聚醯亞胺

並列摘要


This thesis consists of two parts. The first part deals with the syntheses and characterization of novel aromatic poly(amine-amide)s and poly(amine-imide)s with 4-piperidinotriphenylamine [(Pi)TPA] units in the backbone from a newly synthesized diamine monomer, 4,4’-diamino-4”-piperidinotriphenylamine, which was synthesized via the cesium fluoride-mediated N,N-diarylation of 4-piperidinoaniline with 4-fluoronitrobenzene, followed by palladium-catalyzed hydrazine reduction of the intermediate dinitro compound. Amorphous and organosoluble poly(amine-amide)s were prepared by the phosphorylation polyamidation of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. Poly(amine-imide)s were prepared from the diamine monomer with various aromatic dianhydrides via a conventional two-step procedure that included a ring-opening polyaddition to form poly(amic acid)s, followed by thermal or chemical cyclodehydration. All poly(amine-amide)s were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. All the polymers showed high glass-transition temperatures (Tg) between 252-318 °C, and they were fairly stable up to a temperature above 400 °C [for poly(amine-amide)s] or 500 °C [for poly(amine-imide)s]. These polymers exhibited UV absorption maxima around 296-366 nm. The photoluminescence spectra of these polymers in N-methyl-2-pyrrolidone (NMP) solution (10-5 M) exhibited a blue light emission at 387-449 nm with a fluorescence quantum yield (ΦF) up to 3.57 %. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-amide) films cast onto an indium-tin oxide (ITO) coated glass substrate exhibited two reversible oxidation redox couples at 0.44-0.49 and 0.80-0.88 V versus Ag/AgCl in acetonitrile solution. Most of these poly(amine-amide) films revealed excellent stability of electrochromic characteristics, with a color change from colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.00 to 1.20 V. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 636 nm between the neutral state and the fully oxidized state is up to 83 %. The polymers also displayed low ionization potentials as a result of their (Pi)TPA moieties. Cyclic voltammograms of the poly(amine-amide) films on the indium-tin oxide (ITO)-coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potential of 0.27 V (vs. Ag/AgCl) in acetonitrile solution. The second part deals with the syntheses and characterization of novel aromatic poly(amine-amide)s and poly(amine-imide)s with 4-morpholinotriphenylamine [(Mo)TPA] units in the backbone from another newly synthesized diamine monomer, 4,4’-diamino-4”-morpholinotriphenylamine, which was synthesized via the cesium fluoride-mediated N,N-diarylation of 4-morpholinoaniline with 4-fluoronitrobenzene, followed by palladium-catalyzed hydrazine reduction of the dinitro intermediate. All poly(amine-amide)s were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. All the polymers showed high glass-transition temperatures (Tg) between 260-313 °C, and they were fairly stable up to a temperature above 450 °C [for poly(amine-amide)s] or 550 °C [for poly(amine-imide)s]. These polymers exhibited UV absorption maxima around 295-372 nm. The photoluminescence spectra of these polymers in N-methyl-2-pyrrolidone (NMP) solution (10-5 M) exhibited a blue light emission at 376-452 nm with a fluorescence quantum yield (ΦF) up to 4.85 %. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-amide) films cast onto an indium-tin oxide (ITO) coated glass substrate exhibited two reversible oxidation redox couples at 0.50-0.56 and 0.87-0.93 V vs. Ag/AgCl in acetonitrile solution. Most of the poly(amine-amide) films revealed excellent stability of electrochromic characteristics, with a color change from colorless or pale yellowish neutral form to green and blue oxidized form at applied potentials ranging from 0.00 to 1.20 V. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90 %. The polymers also displayed low ionization potentials as a result of their (Mo)TPA moieties. Cyclic voltammograms of the poly(amine-amid)e films on the indium-tin oxide (ITO)-coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potential of 0.36 V (vs. Ag/AgCl) in acetonitrile solution.

並列關鍵字

polyimine polyamine

參考文獻


10.(a) Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Wudl, F. Adv. Mater. 2004, 16, 1905. (b) Sonmez, G.; Shen, C. K. F.; Rubin, Y.; Wudl, F. Angew. Chem. Int. Ed. 2004, 43, 1498. (c) Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. Macromolecules 2005, 38, 669.
12.(a) Imai, Y. High Perform Polym 1995, 7, 337. (b) Imai, Y. React Funct Polym 1996, 30, 3. (c) Huang, S. J.; Hoyt, A. E. TRIP 1995, 3, 262. (d) De Abajo, J.;De la Campa, J. G. Adv Polym Sci 1999, 140, 23.
13.(a) Eastmond, G. C.; Gibas, M,; Paprotny, J. Eur Polym J 1999, 35,2097. (b) Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J.-C.; Harris, F.W.;Cheng, S. Z. D. Polymer 1999, 40, 4571. (c) Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J.-C.; Harris, F.W.;Cheng, S. Z. D. Polymer 1999, 40, 4987. (d) Chou, C.-H.; Reddy, D. S.; Shu, C.-F. J Polym Sci Part A:Polym Chem 2002, 40, 3615. (e) Wu, S.-C.; Shu, C.-F. J Polym Sci Part A: Polym Chem 2003, 41, 1160. (f) Liaw, D.-J.; Chang, F.-C. J Polym Sci Part A: Polym Chem 2004, 42, 5766. (g) Yang, C.-P.; Su,Y.-Y.; Wu, K.-L. J Polym Sci Part A: Polym Chem 2004, 42, 5424. (h) Liu, B.; Hu,W.; Matsumoto, T.; Jiang, Z.; Ando, S. J Polym Sci Part A: Polym Chem 2005, 43, 3018. (i) Liaw, D.-J. J Polym Sci Part A: Polym Chem 2005, 43, 4559.
14.(a) Liou, G..-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.;Imai, Y. J Polym Sci Part A: Polym Chem 2002, 40, 2810. (b) Liou, G..-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.;Imai, Y. J Polym Sci Part A: Polym Chem 2002, 40, 3815. (c) Liou, G..-S.; Hsiao, S.-H. J Polym Sci Part A: Polym Chem 2003, 41, 94. (d) Hsiao, S.-H.;Chang, Y.-H. J Polym Sci Part A: Polym Chem 2004, 42, 1225. (e) Hsiao, S.-H.;Chang, Y.-M. J Polym Sci Part A: Polym Chem 2004, 42, 4056. (f) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Macromolecules 2005, 38, 307. (g) Su, T.-H.; Hsiao, S.-H.; Liou, G.-S. J. Polym. Sci. Part A: Polym Chem. 2005, 43, 2085. (h) Liou, G.-S.; Hsiao, S.-H.; Su, T.-H. J. Mater. Chem. 2005, 15, 1812. (i) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. J. Mater. Chem. 2006, 16, 1831. (j) Liou, G.-S.; Hsiao, S.-H.; Huang, N.-K.; Yang, Y.-L. Macromolecules 2006, 39, 5337. (k) Liou, G.-S.; Hsiao, S.-H.; Chen, W.-C.; Yen, H.-J. Macromolecules 2006, 39, 6036. (l) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. J. Mater. Chem. 2007, 17, 1007.
16.(a) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (b) Thelakkat, M. Macromol. Mater. Eng. 2002, 287, 442. (c) Shirota, Y. J. Mater. Chem. 2005, 15, 75.

延伸閱讀