透過您的圖書館登入
IP:18.217.203.172
  • 學位論文

LZ91鎂鋰合金雙極脈衝微弧氧化研究

Bpolar pulsed micro-arc oxidation on a LZ91 Mg-Li alloy

指導教授 : 楊智富 楊木榮
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究藉由掃描式電子顯微鏡/能量散佈光譜儀(SEM/EDS)、X光繞射儀(XRD)、T原子力顯微鏡(AFM)、T膜厚計、粗度儀、及恆電位儀等設備,探討LZ91(Mg-9Li-1Zn)鎂鋰合金在雙極(Bipolar)微弧陽極處理脈衝波形(I-T波形)參數條件與不同濃度之電解液(包括四硼酸鈉Na2B4O7、氫氧化鈉NaOH、及矽酸鈉Na2SiO3)下所生成陽極膜的表面形態、厚度、粗糙度與耐蝕性。結果顯示,本研究所探討之電解液成份中,以10 g/L Na2SiO3、14 g/L NaOH、及6 g/L Na2B4O7所構成者,可獲最佳之微弧陽極處理結果。在Bipolar脈衝波形中,當正極電流I onP+P之時間(T on +)及短暫零電流之時間(T off +)時間越短,陽極膜層之放電孔洞較小,隨著T on + 時間及T off +時間的增加,陽極膜放電孔洞變大,耐蝕性隨放電孔洞變大而下降。此外,在所測試的Bipolar陽極處理脈衝波之Duty Ratio 與頻率實驗參數中,以10%Duty Ratio及200 Hz頻率條件下可獲得具最佳抗蝕性之陽極膜,其極化電阻(Rp)值由未處理前之7.5×105Ω提升至處理後之3.8×107Ω。

並列摘要


This study aims to investigate pulsed bipolar of Micro-arc Oxidation (MAO) treatment on a Mg-9Li alloy under a variety of electric and electrolytic conditions. The main variables in the bipolar pulse of Micro-arc Oxidation treatment include T on+, T off +, Duty Ratio and frequency of the bipolar pulse electric wave and individual concentrations of NaB2BBB4BOB7B, NaOH, and NaB2BSiOB3B of the electrolyte. Examinations of the resulted oxidation films were carried out by using SEM, EDS, XRD, AFM, surface topology interferometer, coating thickness gauge, and potentionsate. The results showed that the electrolyte consisted of 10 g/L Na2SiO3, 14 g/L NaOH and 6 g/L Na2B4O7 yields the best outcomes of the bipolar pulse micro-arc oxidation treatment. It was found that the average size of the electric dischange holes in the oxide film decreases with decreasing T on+ and T off +, which leads to an improvement in the corrosion resistance of the protective oxide film. It was also found that the bipolar pulse waves with 10% duty ratio and 200 Hz frequency give the most satisfactory results of pulsed bipolar of micro-arc oxidation treatment of Mg-9Li alloy with an impressive Rp value of 3.8×107Ω, which is far better than that of the untreated Mg-9Li alloy(Rp=7.5×105).

參考文獻


[22]李偉任,“AZ31鎂合金硝酸鈰化成皮膜結構與性質研究”,台灣大學材料科學與工程研究所,2007。
[34]傅延俊,“鎂鋁合金陽極處理”,台灣大學材料科學與工程研究所,2004。
[8] T. G Byrer E. L White and P. D Forst:“ The Development Of Magnesium-Lithium Alloys For Structural Applications” , Nasa Contractor Report, 1964.
[10] J. E. Gray, B. Luan,“ Protective coatings on magnesium and its alloys-a critical review,“ Journal of alloys and compounds, Vol. 336, pp. 88, 2002.
[11] M. Avedesian and Hugh Baker, Magnesium and magnesium alloys, ASTM Specialty Handbook, 1999.

被引用紀錄


莊祐懿(2014)。探討純鈦在不同電解液微弧氧化對生成氧化膜層的影響〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00444
何奕融(2013)。微弧氧化製程對鈦基材之影響〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00434
陳家昇(2015)。LZ91與AZ31鎂合金微弧氧化製程與耐腐蝕性質研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01342
孫健凱(2015)。電解質添加劑對6061鋁合金微弧氧化成膜之影響〔碩士論文,逢甲大學〕。華藝線上圖書館。https://doi.org/10.6341/fcu.M0260508
林妤珈(2010)。MoS2粉末於電解液中的添加對7075-T6鋁合金微弧氧化膜層之影響〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315105896

延伸閱讀