透過您的圖書館登入
IP:18.220.178.207
  • 學位論文

具有類免疫倒傳遞演算法的模糊類神經網路 控制器之研究

THE STUDY ON FUZZY NEURAL NETWORK CONTROLLER USING ARTIFICIAL IMMUNE BACK-PROPAGATION ALGORITHM

指導教授 : 呂虹慶
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在這篇論文裡一個具有類免疫倒傳遞演算法的模糊類神經網路控制器被提出且應用在非線性系統上。所提出的控制器是由模糊類神經網路辨證器、類免疫估測器、迫近控制器和計算控制器組成。首先,模糊類神經網路辨證器是用來估測非線性系統的動態。其中辨證器的參數包括權重、標準差跟平均值是經由倒傳遞演算法來調整。接著,藉由類免疫估測器來估測模糊類神經網路辨證器的初值包括權重、標準差跟平均值及倒傳遞演算法的參數;至於類免疫估測器的訓練階段共分成初始化、交配、突變跟演化四個步驟;另外,計算控制器是計算控制力;迫近控制器是用來消除系統的不確定項。最後,藉由倒單擺及二階混沌系統的模擬結果證實了所提出控制器的性能及有效性。

並列摘要


A fuzzy neural network (FNN) identifier based on back-propagation artificial immune (BPIA) algorithm, named the FNN-BPIA controller, is proposed for the nonlinear systems in this thesis. The proposed controller is composed of an FNN identifier, an IA estimator, a hitting controller, and a computation controller. Firstly, The FNN identifier is utilized to estimate the dynamics of the nonlinear system. These parameters which include weights, means, and standard deviations of the FNN identifier are adjusted by the BP algorithm. Secondly, the initial values which include weights, means, and standard deviations of the FNN identifier and the parameters of the BP algorithm are estimated by the IA estimator. Thirdly, the training process of the IA estimator has four stages which include initialization, crossover, mutation, and evolution. Further, the computation controller is given to calculate the control effect and the hitting controller is utilized to eliminate the uncertainties. Finally, the inverted pendulum system and the second-order chaotic system are simulated to verify the performance and the effectiveness of the FNN-BPIA controller.

參考文獻


[1] T. Tsuji and K. Qhnishi, “Control of biped robot which applies inverted pendulum mode with virtual supporting point,” Proceedings of the 7th International Workshop on Advanced Motion Control, pp. 478-483, November 2002.
[2] K. Pathak, J. Franch,, and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 505–513, June 2005.
[3] P. Hsu, “Dynamics and control design project offers taste of real world,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 31–38, August 1992.
[4] H. T. Cho and S. Jung, “Neural network position tracking control of an inverted pendulum an X-Y table robot,” Proceedings of 2003 IEEE Conference on Intelligent Robots and Systems, vol. 2, pp. 1210-1215, October 2003.
[5] H. T. Cho and S. Jung, “Balancing and position tracking control of an inverted pendulum on a x-y plane using decentralized neural networks,” Proceedings of 2003 IEEE/ASME Conference on Advanced Intelligent Mechatronics, vol. 1, pp. 181-186, September 2003.

延伸閱讀