透過您的圖書館登入
IP:3.21.127.68
  • 學位論文

三元 Ti-5Cr-xMo 合金於牙科應用之研究

A study on the ternary Ti-5Cr-xMo alloys for dental applications

指導教授 : 許學全

摘要


本研究選用新熔製的三元鈦合金Ti-5Cr-xMo (X = 1、3、5、7、9、11 wt%) 合金為基材,進行陶瓷燒附強度測試、耐蝕與生物相容性分析,並與商業用純鈦 (Commercially pure titanium, c.p. Ti) 及Ti-6Al-4V合金作比較。 陶瓷燒附鍵結強度方面,經三點彎曲強度測試後,Ti-5Cr-xMo合金與陶瓷鍵結強度範圍為29.75 MPa (Ti-5Cr-1Mo) 至37.67 MPa (Ti-5Cr-9Mo),c.p. Ti為30.72 MPa和Ti-6Al-4V為30.01 MPa,結果顯示Ti-5Cr-9Mo合金具有最高鍵結強度,除了Ti-5Cr及Ti-5Cr-1Mo合金外,其他Ti-5Cr-xMo合金之鍵結強度皆大於c.p. Ti及Ti-6Al-4V合金,且均符合ISO 9693之最低規範25MPa。藉由SEM/EDS分析金屬與陶瓷之破斷面形態和成份分析發現,Ti-5Cr-9Mo合金表面殘留陶瓷量多於c.p. Ti、Ti-6Al-4V及其他Ti-5Cr-xMo合金,證明金屬與陶瓷鍵結強度愈高殘留陶瓷量愈多。熱膨脹係數分析之結果方面,Ti-5Cr-xMo合金之降溫熱膨脹係數範圍在9.67×10-6 /℃至 10.70×10-6 /℃之間,與不透明層瓷粉 (Duceratin Plus) 9.5×10-6 /℃ 相近,說明Ti-5Cr-xMo合金與陶瓷的熱膨脹係數相容性好。 耐蝕性方面,在人工模擬體液 (Hank,s solution) 中進行開路電位 (open circuit potential, OCP) 與動態極化曲線分析 (potentiodynamic polarization curve)。由OCP結果發現Ti-5Cr合金中添加Mo元素會提高最終平衡電位,其中以Ti-5Cr-11Mo合金最高為-0.42 V,而c.p. Ti及Ti-6Al-4V合金分別為-0.58 V及-0.47 V。動態極化曲線分析結果顯示以Ti-5Cr-9Mo合金具有最高腐蝕電位 (Ecorr) -0.85 V,而c.p. Ti則是-1.16 V。以0.25 V高於口腔電位時的電流密度I0.25分析發現所有Ti-5Cr-xMo合金之電流密度皆低於c.p. Ti和Ti-6Al-4V合金。以上結果皆顯示Ti-5Cr合金中添加Mo元素有助提升耐蝕性。 生物相容性方面,類骨母細胞 (MG-63) 與Ti-5Cr-xMo合金共培養1、4、7天後,藉由SEM觀察細胞形態與WST-1 assay分析細胞增生結果顯示,Ti-5Cr-5Mo合金的吸光值最高,顯示其細胞數量最多,其次為Ti-5Cr-3Mo合金。而ALP分析顯示Ti-5Cr-3Mo合金較c.p. Ti具有使細胞較快速的分化能力,但與Ti-6Al-4V合金相較則無顯著差異。結果顯示添加少量的Mo元素可以增加細胞的活性及細胞分化的能力。

並列摘要


The purpose of this study was to evaluate bond strength to low fusing dental porcelain (Duceratin Plus), corrosion resistance and biocompatility of ternary Ti-5Cr-xMo (X= 1, 3, 5, 7, 9, 11 wt%) alloys. The properties of these alloys were compared with those of commercially pure titanium (c.p. Ti) and Ti-6Al-4V alloy. The results of the three-point bonding test showed that c.p. Ti (30.72 MPa), Ti-6Al-4V (30.01 MPa) and Ti-5Cr-xMo alloys ranged from 29.75 MPa to 37.67 MPa. Ti-5Cr-9Mo has the highest bond strength. The bond strength of the other Ti-5Cr-xMo alloys was higher than c.p. Ti and Ti-6Al-4V, with the exception of that of Ti-5Cr and Ti-5Cr-1Mo. In this study, the bond strength to porcelain of all specimens was above the lowest limit value in the ISO 9693 standard (25 MPa). SEM/EDS analysis showed that Ti-5Cr-9Mo had retained more ceramic than c.p. Ti,Ti-6Al-4V and the other Ti-5Cr-xMo alloys. In addition, the coefficient of thermal expansion (CTE) values of the Ti-5Cr-xMo alloys ranged from 9.67×10-6 /℃ (Ti-5Cr-7Mo) to 10.70×10-6 /℃(Ti-5Cr-11Mo), values that are similar to that of Duceratin Plus opaque powder (9.5×10-6 /℃). This could explain the CTE compatiblility between metal and ceramics. For corrosion resistance analysis, all specimens were measured in Hank’s solution using the open circuit potential (OCP) and potentiodynamic polarization curve methods. The OCP showed that the addition of Mo to Ti-5Cr elevates the final stable potential. Ti-5Cr-11Mo had the highest potential (-0.42 V), the potential of c.p. Ti was -058 V and Ti-6Al-4 V had a potential of -0.47 V. The dynamic polarization curve showed that Ti-5Cr-9Mo had the highest corrosion potential (Ecorr) at -0.85 V, while the corrosion potential for c.p. Ti was -1.16 V. By using a current density of 0.25 V (I 0.25), it was shown that the current density of the Ti-5Cr-xMo alloys was lower than that of c.p. Ti and Ti-6Al-4V. Hence, the addition of Mo to Ti-5Cr has been shown to improve corrosion resistance. With regard to biocompatibility, the osteoblast-like cell (MG-63) co-culture with Ti-5Cr-xMo alloys, the SEM observation and WST-1 assay indicate that Ti-5Cr-5Mo had the highest cell quantity and absorbance value, followed by Ti-5Cr-3Mo. The ALP test showed that Ti-5Cr-3Mo had a more rapid cell differentiation than c.p. Ti, but no significant difference was noted when the alloy was compared with Ti-6Al-4V.

參考文獻


142. 蔡明慈 (2002)。 不同刺激時間單脈衝電磁場對造骨細胞與骨髓細胞共同培養形成之類蝕骨細胞凋亡的影響。 中原大學; 醫學工程研究所
2. Taba Jr, M., Kinney, J., Kim, A. S., & Giannobile, W. V. (2005). Diagnostic biomarkers for oral and periodontal diseases. Dental Clinics of North America, 49(3), 551.
3. Peng, T. K., Yao, J. H., Shih, K. S., Dong, Y. J., Chen, C. K., & Pai, L. (1990). Assessment of periodontal disease in an adult population survey in taipei city using CPITN and GPM/T indices. Zhonghua Ya Yi Xue Hui Za Zhi / Zhonghua Ya Yi Xue Hui = Chinese Dental Journal / Dental Association, Republic of China, 9(2), 67-74.
4. Brennan, D. S., Spencer, A. J., & Roberts-Thomson, K. F. (2008). Tooth loss, chewing ability and quality of life. Quality of Life Research, 17(2), 227-235.
11. Eichmiller, F. (2003). Titanium applications in dentistry. The Journal of the American Dental Association, 134, 347-349.

延伸閱讀