帳號:guest(3.143.231.26)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者(中):蔡承育
作者(英):Tsai, Cheng-Yu
論文名稱(中):關於黃金分割樹上的子平移之拓樸熵研究
論文名稱(英):Topological Entropy of Golden-Mean Tree-Shift
指導教授(中):班榮超
指導教授(英):Ban, Jung-Chao
口試委員:班榮超
曾睿彬
張志鴻
口試委員(外文):Ban, Jung-Chao
Tseng, Jui-Pin
Chang, Chih-Hung
學位類別:碩士
校院名稱:國立政治大學
系所名稱:應用數學系
出版年:2022
畢業學年度:110
語文別:英文
論文頁數:14
中文關鍵詞:條型法拓樸及條型熵黃金分割子平移樹
英文關鍵詞:Strip methodTopological and strip entropyGolden-mean tree-shift
Doi Url:http://doi.org/10.6814/NCCU202200470
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • gshot_favorites title msg收藏:0
於2019 年,Petersen 和Salama [1, 2] 給出了在樹上拓樸熵的定義並證明其存在且等於最大下界,此外,證明在k-tree 上考慮黃金子平移,條型熵h_n^{(k)}會收斂到拓樸熵h^{(k)}。

此工作擴展了Petersen 和Salama 的結果,藉由考慮有限字母集A在黃
金分割樹T上利用條型法去計算其拓樸熵h(T_A)。首先,給出一個實數值矩
陣M^∗ 用來描述在高度為n條型樹上的複雜度。其次,找到兩個實數值矩
陣C, D 使得b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, 其中b_{n−2}是指所有在黃金分割樹上的子平移高度為n − 2 的著色數。最後,證明在黃金分割樹上的子平移,條型熵h_n(T_A) 將收斂到拓樸熵h(T_A)。
In 2019, Petersen and Salama [1, 2] showed that the limit in their definition of tree-shift topological entropy is actually the infimum and also proved that the site specific strip approximation entropies h_n^{(k)} converges to the entropy h^{(k)} of the golden-mean shift of finite type on the k-tree.

In this article, we prove that the preceding work of Petersen and Salama can be extended to consider a golden-mean tree T with finite alphabet A and use the strip method to calculate its topological entropy h(T_A). First, a real matrix M which describe the complexity of strip method tree with hight n is introduced. Second, two real matrices C and D are constructed for which b_{n−2}D ≤ M^∗ ≤ b_{n−2}C, where b_{n−2} is the number of all different labeling of subtree of the golden-mean tree-shift with level n − 2. Finally, we shown that the n-strip entropy h_n(T_A) will converge to the topological entropy h(T_A) of golden-mean tree-shift T_A.
中文摘要 i

Abstract ii

Contents iii

1 Introduction 1

2 Preliminaries and main result 5
2.1 Notations and definitions . . . . . . . . . . . . . . 5
2.2 Main results . . . . . . . . . . . . . . . . . . . . 7

3 Conclusion 11

References 14
[1] Karl Petersen and Ibrahim Salama. Tree shift topological entropy. Theoretical Computer Science, 743:64–71, 2018.

[2] Karl Petersen and Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 40(7):4453, 2020.

[3] Nathalie Aubrun and Marie-Pierre Béal. Tree-shifts of finite type. Theoretical Computer Science, 459:16–25, 2012.

[4] Nathalie Aubrun and Marie-Pierre Béal. Sofic tree-shifts. Theory of Computing Systems, 53(4):621–644, 2013.

[5] Nishant Chandgotia and Brian Marcus. Mixing properties for hom-shifts and the distance between walks on associated graphs. Pacific Journal of Mathematics, 294(1):41–69, 2018.

[6] Roy L Adler, Alan G Konheim, and M Harry McAndrew. Topological entropy. Transactions of the American Mathematical Society, 114(2):309–319, 1965.

[7] Tomasz Downarowicz. Entropy in dynamical systems, volume 18. Cambridge University Press, 2011.

[8] Douglas Lind, Brian Marcus, Lind Douglas, Marcus Brian, et al. An introduction to symbolic dynamics and coding. Cambridge university press, 1995.

[9] Jung-Chao Ban and Chih-Hung Chang. Mixing properties of tree-shifts. Journal of Mathematical Physics, 58(11):112702, 2017.

[10] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: Irreducibility, mixing, and the chaos of tree-shifts. Transactions of the American Mathematical Society, 369(12):8389–8407, 2017.

[11] Jung-Chao Ban and Chih-Hung Chang. Tree-shifts: The entropy of tree-shifts of finite type. Nonlinearity, 30(7):2785, 2017.

[12] Jung-Chao Ban, Chih-Hung Chang, Wen-Guei Hu, and Yu-Liang Wu. Topological entropy for shifts of finite type over Z and tree. arXiv preprint arXiv:2006.13415, 2020.

[13] Jung-Chao Ban and Chih-Hung Chang. Characterization for entropy of shifts of finite type on cayley trees. Journal of Statistical Mechanics: Theory and Experiment, 2020(7): 073412, 2020.

[14] Jung-Chao Ban, Chih-Hung Chang, and Yu-Hsiung Huang. Complexity of shift spaces on semigroups. Journal of Algebraic Combinatorics, 53(2):413–434, 2021.

[15] Wei-Lin Lin. On the strip entropy of the golden-mean tree shift. Master’s thesis, National Chengchi University, 2021.

[16] Itai Benjamini and Yuval Peres. Markov chains indexed by trees. The annals of probability, pages 219–243, 1994.

[17] Hans-Otto Georgii. Gibbs measures and phase transitions. de Gruyter, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *