帳號:guest(18.116.35.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者(中):江政矩
作者(英):Chiang, Cheng-Chu
論文名稱(中):無人機航空攝影測量輔助土地複丈可行性之研究
論文名稱(英):The study on the feasibility of Land Resurvey with UAV photogrammetry
指導教授(中):邱式鴻
指導教授(英):Chio, Shih-Hong
口試委員:黃金聰
徐百輝
口試委員(外文):Hwang, Jin-Tsong
Hsu, Pai-Hui
學位類別:碩士
校院名稱:國立政治大學
系所名稱:地政學系
出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:圖解數化地籍圖土地鑑界複丈UAV航空攝影測量
英文關鍵詞:digitized graphic mapland revisionUAV photogrammetry
Doi Url:http://doi.org/10.6814/NCCU201901074
相關次數:
  • 推薦推薦:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • gshot_favorites title msg收藏:0
土地鑑界複丈關係人民福祉,依地籍圖測量及保存方式可分為數值區地籍圖、圖解區地籍圖、圖解數化區地籍圖三種。數值區地籍圖由於坐標系統已統一TWD97地籍坐標系,因此可直接利用數值法進行土地鑑界複丈;而圖解區地籍圖在近年來雖已逐漸數化,但數化後的地籍圖仍保存圖紙伸縮、褶皺破損之現象,這些現象會造成圖地不符、地籍圖分區接合、套圖前後面積改變等問題。因此鑑界前,需地測現況執行套圖分析。過去針對圖解數化區土地鑑界複丈進行之研究,大多利用地面測量方式對現況點進行測量,再將現況圖與地籍圖進行套圖分析。相較地面測量,使用無人機航空攝影測量能提供大量現況資訊,也可觀測地測難以觀測之現況點位。與現行圖解數化區土地鑑界複丈只針對欲鑑界土地附近進行局部套圖分析相比,利用無人機航測繪製之現況圖因含有大量現況資訊,可針對整體區域進行套圖分析,在整體區域內之界址點皆符合精度要求的前提下,減少為了提升欲鑑界單筆土地附近套圖精度而使整體精度下降之情形;且針對數值區土地鑑界複丈與圖解數化區土地鑑界複丈時,可利用無人機影像多光線交會之方式補建圖根點,增加自由測站法使用之彈性。因此,本研究於實驗區佈設合適之控制點與用eGNSS觀測其坐標後,利用四旋翼無人機酬載具55mm焦距中像幅量測型相機,於航高約300公尺取得前後左右80%且地面解析度3公分之影像,並以Pix4DMapper及Orima軟體進行空三平差,成果顯示在Pix4DMapper或將ORIMA空三解算成果輸出無畸變差影像於Pix4DMapper中進行圖根補點之可行性;而於套圖方面,以正射影像輔助辨識並以所測現況圖於ArcMap中執行Affine轉換對實驗區分區套圖,成果顯示套圖後地籍圖更符合土地現況,套圖前後現況點至地籍線垂距差異量減少2-9公分不等;最後再由實地測設方式完成複丈程序,測量成果均符合相關規範,顯示以無人機航測方式輔助土地鑑界複丈之可行性。
Survey of boundary verification affects people's well-being. According to the methods of surveying and the ways of preservation, there are three kind of maps, i.e. digital cadastral maps, graphic cadastral maps and digitalized graphic cadastral maps. The coordinate system of the digital cadastral maps have been unified into TWD97 cadastral coordinate system, so the surveyors can use digital method to perform boundary verification. Additionally, though graphic cadastral maps have been digitalized for the past few years, digitalized graphic cadastral maps still preserve differential shrinkage, wrinkles, folds and damage of the original maps. It will cause problems such as the difference between maps and the map of land detail situation, map join of the map sheets, and the change of the area after map registering. Therefore, map registration with land detail situation should be done before boundary verification. For most studies on the boundary verification of the digital graphic cadastral maps used ground survey to survey land detail situation to perform map registration. Compared to ground survey, UAV photogrammetry can provide lots of land detail situation. Moreover, the current map registration only locally focuses on the neighborhoods of the parcel for boundary verification. UAV photogrammetry can measure land detail situation globally to perform map registration in the whole area. Therefore, it can reduce the problem of local consistence from local land detail situations surveying by ground surveying and increase the reliability of the map registration globally. Additionally, for the boundary verification in digital cadastral areas or digitalized graphic areas, control points are probably lost. Using space intersection of aerial photogrammetry by multiple bundles to measure the coordinates of control points can bring more flexibility when using free station method for verification of parcel points.
Therefore, this study used four-rotor UAV carried middle format metric camera with 55 mm focal length at flying height about 300 meters to collect the images with 80% endlap and sidelap and 3cm ground sampling distance. Before that, the suitable control points were targeted and surveyed by eGNSS. After that, Pix4dMapper and ORIMA software were employed to perform aerotriangulation, the result show that the control points for verification of parcel points can be measured in Pix4Dmapper by space intersection of aerial photogrammetry by multiple bundles or using the aerotriangulation result of ORIMA to generate undistorted images and import these images with related results into Pix4Dmapper for determining the coordinates of control points by space intersection of aerial photogrammetry by multiple bundles are possible. Moreover, the generated orthophoto can identify the land detail situation and the land detailed map of generated by UAV aerial photogrammetry can assist map registration using Affine transformation in ArcMap can make the cadastral map and land detail situation more consistent. The difference between land detail points to cadastral lines can be reduced by 2-9 centimeters after map registration. Finally, the parcel points can be stakeout to complete the process of boundary verification, and the result proves that UAV photogrammetry is of the feasibility to assist the boundary verification.
謝誌 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 論文架構 5
第二章 文獻回顧 7
第一節 土地鑑界複丈方式 7
第二節 無人機航測 15
第三章 研究方法與理論基礎 19
第一節 佈標及航線規劃 20
第二節 eGNSS地面控制測量及最小二乘配置平差 21
第三節 空中三角測量 26
第四節 立體觀測繪製現況圖 37
第五節 分區檢視與套圖分析 42
第六節 自由測站法精度模擬分析與實地測設 44
第四章 成果分析 47
第一節 研究區域與儀器設備 47
第二節 佈標及航線規劃 50
第三節 eGNSS地面控制測量及最小二乘配置平差 52
第四節 空中三角測量 56
第五節 立體觀測繪製現況圖 64
第六節 分區檢視與套圖分析 70
第七節 自由測站法精度模擬分析與實地測設 75
第五章 土地複丈方法之再探討 85
第六章 結論與建議 89
參考文獻 92
內政部,2017,「地籍測量實施規則」修訂版。
台灣省地政處,1994,「台灣省台南縣學甲測區航測輔助地籍圖重測作業示範」。
吳宗寶、高書屏、甯方璽,2003,「圖解數化土地複丈電腦套圖之研究」,『地籍測量』,22(3):1-23。
余至義、林頌富,1998,「GPS衛星測量輔助土地鑑界複丈試驗」,『地籍測量』,17(4):28-48。
呂子泰,2014,「以坐標向量修正法改善地籍圖數化成果與地籍圖重測成果比較之研究」,國立中興大學土木工程學系碩士論文:台中。
何維信、詹君正,2010,「虛擬基準站即時動態定位辦理土地複丈精度之研究」,『地籍測量』,13(2):79-100。
李添福,2006,「以最小二乘配置法進行小區域地籍資料坐標轉換精度之研究-以宜蘭縣壯圍鄉吉祥段為例」,國立宜蘭大學土木工程學系碩士論文:宜蘭。
邱式鴻、顏怡和、丁育群,2014,「旋翼型UAV影像局部重測都市區千分之一地形圖之研究」,『台灣土地研究』,17(2):57-88。
林登建、洪本善,2004,「以圖解自由測站法進行數化成果重測精度評估初步之研究」,『地籍測量』,23(1):16-29。
高書屏、吳亞翰、陳昭男,2009,「利用面積約制坐標轉換以改善土地複丈效率之研究」,『地籍測量』,28(3):15-31。
陳世平,2003,「應用數值法辦理圖解地籍圖數化區土地複丈之研究」,『地籍測量』,22(1):32-41。
陳祈賢,2007,「固定建築物上建置高保存性控制點之研究」,國立成功大學地球科學研究所碩士論文:台南。
陳昱芸,2015,「無人機航拍之空中三角測量精度與控制配置探討」,國立台灣大學土木學系碩士論文:台北。
張奕華,2011,「遺傳演算法應用於圖解數化地籍圖套合現況之研究」,國立交通大學工學院工程技術與管理學程碩士論文:新竹。
黃文華,2006,「圖解區數化地籍圖分區接合之研究」,國立中興大學土木工程學系碩士論文:台中。
黃華尉,2001,「TWD97與TWD67二度TM坐標轉換之研究」,國立成功大學測量工程學系:台南。
楊昌和,2006,「數值化圖解地籍圖坐標轉換與地籍圖重測成果比較研究」,逢甲大學土地管理學系碩士學位論文:台中。
趙健翔,2009,「利用高保存性控制點辦理土地複丈可行性之研究」,國立成功大學地球科學研究所碩士論文:台南。
劉冠岳、王建得、黃國良、何定遠、鄭彩堂,2014,「VBS-RTK應用於界址測量之探討」,『地籍測量』,33(2):21-38。
鄭至哲,2012,「e-GPS系統應用於土地複丈之作業模式探討-以台南市玉井區為例」,國立成功大學地球科學研究所碩士論文:台南。
鄭彩堂、董荔偉、劉正倫、鄒慶敏,2005,「圖解數化成果分幅及整合圖約制條件坐標轉換研究」,『地籍測量』,24(3):18-45。
薛信男,2006,「數化圖解地籍圖坐標整合之初步研究-以高雄市中都三小段為例」,國立中興大學土木工程學系碩士論文:台中。
謝幸宜、邱式鴻,2013,「以自率光束法提升四旋翼 UAV 航拍影像之空三平差 精度」,『航測及遙測學刊』,16(4):245-260。
甯方璽、涂振邦,2015,「以坐標向量修正法改進圖解數化地籍圖數化面積與登記面積不符之研究」,『中正嶺學報』,44(1):113-122。
Ahmad, A., 2011, “Digital Mapping Using Low Altitude UAV”, Pertanika J. Sci. &
Technol., 19 (S): 51 – 58.
Barry, P., Coakley, R., 2013, “ACCURACY OF UAV PHOTOGRAMMETRY
COMPARED WITH NETWORK RTK GPS”, Ireland.
http://www.uav.ie/PDF/Accuracy_UAV_compare_RTK_GPS.pdf
Bendig, J. , Bolten, A.&Bareth, G., 2013, “UAV-based Imaging for Multi-Temporal,
very high Resolution Crop Surface Models to monitor Crop Growth Variability”,
Photogrammetrie-Fernerkundung-Geoinformation, 2013(2):551-562.
Crommelinck, S., Bennett, R., Gerke, M., Yang, M. Y., &Vosselman, G., 2017,
“Contour Detection for UAV-Based Cadastral Mapping”, Remote Sensing, 9(171).
Crommelinck, S., Höfle, B.,Koeva, M. N.,Yang, M. Y., Vosselman, G., 2018,
“INTERACTIVE CADASTRAL BOUNDARY DELINEATION FROM UAV
DATA”, Remote Sensing and Spatial Information Sciences, 42.
Eisenbeiss, H., 2009, UAV photogrammetry, Zürich: ETH Zürich.
Fernández‐Hernandez, J., González‐Aguilera, D., Rodríguez‐Gonzálvez, P.,
Mancera‐Taboada, J., 2015, “IMAGE-BASED MODELLING FROM UNMANNED AERIAL VEHICLE (UAV) PHOTOGRAMMETRY: AN EFFECTIVE,LOW-COST TOOL FOR ARCHAEOLOGICAL APPLICATIONS”, Archaeometry , 57(1):128–145.
Gonçalves, J., Henriques, A., 2015, “UAV photogrammetry for topographic
monitoring of coastal areas”, ISPRS Journal of Photogrammetry and Remote Sensing, 104:101-111.
Haala, N., Cramer, M., Weimer, F. and Trittler, M., 2011, “PERFORMANCE TEST
ON UAV-BASED PHOTOGRAMMETRIC DATA COLLECTION”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.38-1(C22).
Horemuž, M.& Andersson, V., 2011, “Analysis of the Precision in Free Station
Establishment by RTK GPS”, Survey Review, 43(323):679-686.
Hunt, Jr., Hively, W., Fujikawa, S., Linden, D., Daughtry, C.&McCarty, G., 2010,
“Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring”, Remote Sens., 2(1):290-305.
Mesas-Carrascosa, F., Rumbao, I., Berrocal, J., Porras, A. 2014, “Positional
Quality Assessment of Orthophotos Obtained from Sensors Onboard Multi-Rotor UAV Platforms”, Sensors, 2014, 14(12):22394-22407
Manyoky, M., Theiler, P., Steudler, D.&Eisenbeiss, H., 2011, “UNMANNED
AERIAL VEHICLE IN CADASTRAL APPLICATIONS”, Remote Sensing and
Spatial Information Sciences, Vol.38-1/C22.
Marshall, A., 2007,” Analysis of free station errors”, Surv431 Engineering Surveying, National School of Surveying.
Mikhail, E. M., Bethel, J. S., McGlone, J. C., 2001, Introduction to Modern
Photogrammetry, New York: John Wiley&Sons.
Pix4DMapper (2017). How to convert the Camera Model Internal Parameters from
Brown 1964/ Heikkila 1997/ Fraser 1997 to Pix4D Camera Model Definition. Retrieved August 17, 2017 from Taiwan on the World Wide Web: https://support.pix4d.com/hc/en-us/articles/203824175-How-to-convert-the-Camera-Model-Internal-Parameters-from-Brown-1964-Heikkila-1997-Fraser-1997-to-Pix4D-Camera-Model-Definition?flash_digest=82f970a13cabc0c21f9d0151c8a3c0990487efd7
Remondino, F., Barazzetti, L., Nex, F., Scaioni, M and Sarazzi, D., 2011, “UAV
PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING-CURRENT STATUS AND FUTURE PERSPECTIVES”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.38-1/C22.
Rijsdijk , M., van Hinsbergh, W.H.M., Witteveen, W., ten Buuren, G.H.M.,
Schakelaar, G.A., Poppinga, G., van Persie, M.&Ladiges, R., 2013, “UNMANNED AERIAL SYSTEMS IN THE PROCESS OF JURIDICAL
VERIFICATION OF CADASTRAL BORDER”, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2
Ruffhead, A., 1987, “AN INTRODUCTION TO LEAST-SQUARES
COLLOCATION”, Survey Review, 29:85-94.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *