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Abstract	

Protein	plays	an	important	role	in	the	cellular	process	of	an	organism,	and	its	function	is	
demonstrated	 by	 protein	 interaction.	 Rich	 information	 on	 protein	 interactions	 can	
facilitate	the	treatment	of	diseases	and	the	development	of	drugs,	so	accurate	prediction	
of	protein	interactions	is	of	great	significance.	High‐flux	biological	experiments	can	be	
used	to	predict	new	protein	pairs,	but	they	are	expensive	and	time‐consuming	to	operate	
and	do	not	meet	 the	demand	 for	such	 information.	With	 the	rise	of	machine	 learning	
algorithms	 and	 the	 increasingly	 powerful	 computing	 power,	 the	 use	 of	 scientific	
computing	models	to	predict	each	other	has	become	the	first	choice.	This	paper	mainly	
studies	 the	 application	 of	 weighted	 sparse	 representation	 classifiers	 under	 protein	
sequence	 feature	coding.	First	of	all,	the	composition,	transfer	and	distribution	of	the	
physical	and	chemical	properties	of	amino	acids	are	selected	to	encode	the	amino	acid	
sequence.	Secondly,	according	 to	 the	characteristic	 importance	of	 random	 forest,	 the	
feature	operator	de‐dimensionally	de‐noises.	Finally,	for	the	features	extracted	in	this	
paper,	a	weighted	sparse	representation	classifier	with	strong	noise	resistance	is	used	
to	classify	the	feature	set.	The	results	of	the	50%	cross‐validation	were:	accuracy	96.97%,	
sensitivity	 97.51%,	 accuracy	 96.43%,	 Matthews	 correlation	 coefficient	 93.91%,	
Predictive	results	are	better	than	existing	machine	learning	models.	

Keywords	
Protein	 interaction;	 Weighted	 sparse	 expression	 classifier;	 Dimension	 reduction;	
Feature	extraction.	

1. INTRODUCTION	

In recent years, with the advancement of the Human Genome Project, life sciences have 
ushered in a new era. With the huge amount of biological data that comes with it, researchers 
hope to use data mining technology to obtain research-meaningful information and further 
reveal the nature of life activities. Protein, as an important unit of biological cells, is the carrier 
and function performer of the main life activities, and participates in the transport and storage 
of metabolites in the body, the biochemical reaction of the birth, and the regulation of cellular 
processes and activate immune functions and other life processes. However, protein function is 
not performed independently by a single protein, but by protein-to-protein interactions 
(Protein-Protein Interactions, PPI). [1, 2] The interaction between proteins and the protein 
complex formed by interaction are the main finishers of various basic functions of cells. Almost 
all important life activities, including DNA replication and transcription, protein synthesis and 
secretion, signaling and metabolism, and so on, depend on the interaction between proteins 
[3,4]. Therefore, predicting protein interactions has become a challenging and practical hot 
issue in the field of biological information. 
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Genes are units with genetic functions, and their expression is made up of proteins, which 
determine the amino acid sequence of proteins. An organism's protein is a specific configuration 
that folds and curls inthree-dimensional space after 20 amino acids are polymerized by 
dehydration to form an amino acid sequence (protein sequence). It is also because of the 
differences between amino acid sequences and the physical interaction between amino acids 
and spatial mutual support that protein diversity and stability are formed. Protein data is 
divided into four types: primary structure, secondary structure, third-level structure and 
fourth-level structure, in which the protein sequence to be explored in this paper is a primary 
structure, which is easier to represent than other structures in sequence coding. Therefore, it is 
theoretically feasible to predict protein interaction through protein sequence. 

Traditional methods of identifying whether proteins interact are obtained through biological 
experiments, but this method of identification is time-cost, usually only a few pairs of proteins 
can be identified in a single experiment, the speed of identification is much lower than the speed 
of protein sequence discovery. At the same time, due to some artificial factors caused by a 
number of errors and lack of interaction, to a large extent will interfere with the relevant 
downstream work. Therefore, it is urgent to develop and design algorithms with high 
performance to predict protein interaction. Scholars in this field have found that machine 
learning-based algorithms can be effectively combined with protein sequence information, and 
the accuracy of qualitative leaps, reducing waste of resources, which will be conducive to the 
growth of real economic benefits, accelerate scientific research output, and thus promote the 
rapid development of biology. 

Accurate prediction of protein interactions can tap the function of unknown proteins and 
provide guidance to biological species that have not been experimentally verified. At the same 
time, the prediction results of computer methods can also be used as verification and 
supplement to the results of biological experiments. In practical sense, the research of this 
subject is of indispensable significance for understanding the inner tissue of life, and it is of 
great application value to the treatment of diseases and the development of drugs. 

At present, the methods of detecting whether proteins interact are mainly divided into 
experimental methods based on biological information and digital calculation methods. The 
biological experimental methods for predicting protein interaction include yeast double 
hybridization system, series affinity and purification, mass spectrometry, 
immunocoprecipitation technology, etc. But the experimental method is flawed, so scholars 
turn their attention to the scientific calculation method.  

Protein sequence information prediction is mutual. As the basic unit of protein formation, 
amino acid sequence information is rich in resources and easy to obtain, widely used in the field 
of predicting protein interaction and has a high recognition rate, which has been favored by 
scholars. According to the principle of data mining, the recognition rate can be improved from 
two angles, one is to extract valuable information in the amino acid sequence to build feature 
vectors, and the other is to optimize the pattern recognition algorithm or machine learning 
algorithm. 

The feature vector is constructed from different angles of amino acid sequence information, 
and the physical and chemical properties of amino acids are the scientific basis for coding the 
following methods. For example, as early as 2007, Shen et al. [5] proposed a tripart union 
feature coding method that takes into account the influence of the left and right neighbors of 
amino acids on themselves with an accuracy of 83.9%. However, this coding ignores the effects 
of intermediate and long-range amino acids on itself, so Guo et al. [6] proposed a self-co-
anovating coding algorithm, selecting the width of the sliding window to be 30, using support 
vector machine prediction, with an accuracy of 86.5%. You et al. [7] proposed a multi-scale 
continuous and discontinuous feature coding algorithm, which recombines the sequence 
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segments, calculates the physical and chemical composition, transformation and distribution of 
each subsequence, and finally stitches them together. The feature dimension of this 
construction is too high, so the feature selection method is adopted to remove redundancy, and 
after this processing, the support vector machine is trained to achieve 91.63% prediction 
accuracy. In order to give full play to the potential effects of different sequence coding 
algorithms, Zhang et al. [8] proposed a classification algorithm based on integrated deep 
learning and integrated protein sequence coding, and configured the corresponding deep 
learning network for each feature coding method, with a prediction accuracy rate of 95.29%. In 
order to depict multiple layers of information in the protein sequence, Chen et al.[9] designed 
the StackPPI Stack Integrated Classifier, which integrates random forests, extreme random trees, 
and logistic regression with accuracy 96.64%. 

While the amino acid sequence feature coding algorithm was developed, the machine 
learning algorithm for the second classification was widely used to predict each other of 
proteins. Representative are: support vector machine, Bayesian classifier and neural network, 
etc, but these methods have some disadvantages. The support vector machine has the absolute 
defect of hard interval classification, the Bayesian classifier is influenced by the small sample 
size, which leads to insufficient prior information, and the neural network output method has 
the problem of network structure determination. Therefore, there is still room for exploration 
in model design. Weighted sparse mean classifiers overcome the above problems to a certain 
extent and are worth studying. 

2. PROTEINS	SEQUENCE	INFORMATION	EXTRACTION	

2.1. Data	Preprocessing	

In this paper, two highly representative protein interaction data sets are selected: Yeast and 
Human data in the DIP database. As a positive sample in an experiment, there is a lot of 
redundancy between them, which can affect the performance of the classifier, so the data set 
needs to be filtered. First, remove samples with a sequence length of less than 50 in the dataset, 
and then use cd-hit to cluster the sequence, preserving a protein sequence with homogeneity 
of less than 40%. After processing, the Yeast dataset contains 5,594 pairs of interacting proteins, 
and theHuman dataset contains 3,899 pairs of interacting proteins.  

Since non-interactive data is not easy to obtain, it is necessary to manually build high-quality 
negative samples in order to train classifier performance. Research shows that [10], Proteins 
located in different subcellular locations do not interact. Based on this, the strategy of randomly 
selecting protein pairings of different subcellular positionings from positive samples to 
generate negative samples must be met, and the conditions of no repetition of positive and 
negative samples and equalization of the sample size of opposing sample sets must be met. In 
this way, the Yeast dataset contains 5594 negative samples, and the Human dataset contains 
4262 negative samples. Ultimately, the Yeast dataset contains 11188 pairs of protein sequences, 
and the Human dataset contains 8,161 pairs of protein sequences. 

2.2. Protein	Sequence	Feature	Extraction	Method	

In order to better adapt to machine learning models, extracting the right characteristics from 
protein sequence information is a critical step. These characteristics should reflect most of the 
key information expressed in protein sequences from multiple perspectives. 

Protein sequences are made up of 20 amino acids, and the physical and chemical properties 
of each amino acid closely influence protein interactions. At the same time, 20 categories can 
lead to feature dimension disasters and redundant information, so amino acids are classified 
into 3 categories based on information about the 13 physical and chemical properties of amino 
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acids [11], and only a representative classification of 6 physical and chemical properties is listed 
here. See Table 1 for details. 

 
Table	1.	Classification of the physical and chemical properties of amino acids 
properties Category 1 Category 2 Category 3 

Hydrophobicity RKEDQN GASTPHY CLVIMFW 
Vanderwaard volumn GASTPDC NVEQIL MHKFRYW 

Polarity LIFWCMVY PATGS HQRKNE 
Polarization rate GASDT CPNVEQIL KMHFRYW 
Electric charge KR ANCQGHILMFPSTWYV DE 

Secondary structure EALMQKRH VIYCWFT GNPSD 

 
CTD method is a characteristic representation method that describes the composition, order 

and distribution of amino acid residues in the global sequence. The author gives the following 
example, in accordance with the above classification guidelines, 
'MQRPGPRLWLVLQVMGSCAAISSMDMERP' is expressed as 
'12233321111121133133133121223'. Amino acid Composition can be achieved through the 
following calculation process:  

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛ሺ𝑟ሻ ൌ  
𝐿ሺ𝑟ሻ

𝐿
, 𝑟 ∈ ሼ𝑃, 𝑁, 𝐻ሽ 

L(r) in this formula represents the proportion of the class r to which the amino acid belongs 
in the sequence. The protein sequence can be observed to contain 12 H, 10 N, and 7 P. L 
represents the length of the protein sequence, so the three amino acid composition 
characteristics are constructed as:12/(12+10+7)=0.4138, 10/(12+10+7)=0.3448, 
7/(12+10+7)=0.2414. 

The Transition between aminoacids can be achieved through the following calculation 
process: 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛ሺ𝑟ሻ ൌ  
𝐿ሺ𝑟, 𝑠ሻ ൅ 𝐿ሺ𝑠, 𝑟ሻ

𝐿 െ 1
, 𝑟 ∈ ሼሺ𝑃, 𝑁ሻ, ሺ𝑁, 𝐻ሻ, ሺ𝐻, 𝑃ሻሽ 

Where L(r,s) represents the proportion of conversions from r to s and s to r to the categories 
to which amino acids belong. The H to P or P to H ratio in the sequence is 7/28=0.25, The same 
conversion N to P or P to N ratio and the conversion N to H or H to N. The percentages are 
3/28=0.107,5/28=0.1768. 

Feature D represents the distribution of each type of amino acid residue in the sequence 
distribution position (Distribution), mainly calculating the distribution of each class of amino 
acids in the total amount of 1%, 25%, 50%, 75%, 100% of the total amino acid distribution 
throughout the sequence. The sequence contains 10 N-residuals, calculating the first, the 
second (25% ×10≈2), the third (50% × 10≈5), the fourth (75% ×10≈7), and the fifth The 
position of the base (10) in the amino acid sequence, and finally in the sequence is 4,5,15,17,21, 
so the characteristics of D extraction are: (9.09%, 13.64%, 45.45%, 63.64%, 95.45%). 

Finally, for each amino acid sequence, three descriptors (C, T, D) are calculated in the same 
way and stitched together as a 273-dimensional feature vector with a feature dimension of 39 
for C, 39 for T, and 195 for D. The two inter-made or non-interoperability protein sequence pairs 
are then combined to obtain a 546-dimensional feature vector. 

2.3. Feature	Selection	

In general, too high a feature dimension can result in an increase in model calculations, and 
some features contribute little or no to the model. Therefore, it is necessary to use some 
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methods to filter out redundant features and reduce feature space, which is beneficial to reduce 
unnecessary waste of resources, reduce time costs, and improve the prediction accuracy of the 
model. Feature selection is a method to remove irrelevant features, selecting the optimal subset 
of features from the original feature set, so that the feature selection can achieve similar or 
better results than before. The feature selection method based on random forest is an efficient 
dimensional reduction tool. 

The Random Forest Algorithm [12] is integrated by multiple decision trees. Its randomness 
is reflected in the randomness of the training set and the randomness of the selection of 
candidate separation features, which create the diversity of random forests. First, random 
forests generate multiple training sets using the bootstrap method. Then, for each training set, 
construct a decision tree. Finally, when the node selects the feature split, it randomly selects a 
part of the feature, finds the optimal feature in the pumped feature, applies it to the node, and 
divides it.  

The process of feature selection is actually to sort the importance of features. The merits of a 
feature depend on how relevant it is to the classification label. In this paper, the characteristics 
are ranked according to the GINI coefficient according to the classification accuracy criterion 
function of random forests. Set the set T contains a sample of K categories, then the GINI 
coefficient calculation formula of T is: 

𝐺𝐼𝑁𝐼ሺ𝑇ሻ ൌ 1 െ ෍ 𝑃௝
ଶ

௄

௝ୀଵ

 

Where 𝑃௝ is the probability of a Class j sample appearing. After a split, T is divided into m 
parts, at which point the GINI coefficient is: 

𝐺𝐼𝑁𝐼௦௣௟௜௧ሺ𝑇ሻ ൌ
𝐾ଵ

𝐾
𝐺𝐼𝑁𝐼ሺ𝑇ଵሻ ൅ ⋯ ൅

𝐾௠

𝐾
𝐺𝐼𝑁𝐼ሺ𝑇௠ሻ 

The smaller the GINI coefficient, the higher the score on the feature. By setting a threshold, 
select features that contribute more to the model than the threshold as the final feature set. The 
reorganization process for the feature vector in this article is shown in Figure 1. 

 

	
Figure	1.	Feature reorganization flowchart 

3. PREDICTIVE	MODELS	AND	EVALUATION	METHODS	

3.1. Weighted	Sparse	Representation	Based	Classification	

With the advent of the era of big data, analyzing billions of dollars of data is undoubtedly a 
headache, many researchers note the importance of data reduction methods. At present, sparse 
representation theory can provide a concise representation of complex redundant information, 
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which is widely used in the fields of pattern recognition and computer vision, and is the focus 
of research and development direction of compression theory. The Sparse Representation 
Classifier (SRC)was designed by Wright [13]. And applied to face recognition has achieved more 
satisfactory results. The basic assumption of the algorithm is that each test sample can be 
linearly represented by a training sample as a complete base, and the linear combination 
coefficients shown in the table are sparse and contain the categories to which the sample 
belongs. SRC based on the above algorithmic ideas has unique noise resistance and good 
robustness, and performs well in more classification models. 

The given dataset X∈𝑅௠ൈ௡, m is the sample dimension, n is the number of samples.The set 
sample is divided into k categories, and the sub matrix that makes up the training sample is 
𝑋௞ ൌ ሾ𝑙௞,ଵ, 𝑙௞,ଶ, … , 𝑙௞,௡ሿ , 𝑋௞  is the dictionary to be sparse. Sparse indicates that the classifier 
wants to calculate a sparse matrix A, makes 𝑋௞𝐴 the optimal approximation representation for 
the test sample. A test sample y, expressed in the above concept, can be symbolized as: 

 
            　𝑦 ൌ 𝛼௞,ଵ𝑙௞,ଵ ൅ 𝛼௞,ଶ𝑙௞,ଶ ൅ ⋯ ൅ 𝛼௞,௡ೖ

𝑙௞,௡ೖ
                     (1) 

 
Which 𝛼௞,௜ is the coefficient corresponding to the k-class training sample. Because a training 

sample of a different class than the test sample contributes close to 0 or equal to 0to the 
testsample, the (1) formula can be represented as: 

 
                           y = X𝜔                                 (2) 

 
Where 𝜔 ൌ ሾ0, … ,0, 𝜔௞,ଵ, 𝜔௞,ଶ, … , 𝜔௞,௡ೖ

, 0, … ,0ሿ் , then the sparse representation coefficient 
of y in the dictionary. If the 𝜔  is ideal, the training sample corresponding to the non-zero 
coefficient in the 𝜔 is more likely to be the same atom of the test sample, while the less the 
non-zero coefficient, the sparserest. The vector can be solved using the following model: 

 
           𝜔ෝ଴ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛||𝜔||଴ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 ൌ 𝑋𝜔                    (3) 

 
Formula (3) Minimizing 𝑙଴ the paradigm is an NP-hard problem. According to the theory of 

compression perception, 𝑙଴ is rare for the vector solved by the paradigm to be strictly equal to 
zero, which can be transformed into a 𝑙ଵ  convex optimization problem that minimizes the 
number of models. Therefore, the target function becomes: 

 
          𝜔ෝ଴ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛||𝜔||ଵ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 ൌ 𝑋𝜔                     (4) 

 
Because there is more or less noise in the actual situation, the error threshold 𝜀  is 

introduced, 𝜀 is greater than zero: 
 

       𝜔଴ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛||𝜔||଴ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ห|𝑦 െ 𝑋𝜔|ห ൏ 𝜀                  (5) 

 
Next, the sparse coefficients obtained are classified by the corresponding category, and the 

test sample can be reconstructed by different types of training samples. Ultimately, the decision 
rule for sparsely representing classifiers is to compare the residual size of different classes of 
refactored samples with the test samples, which can be summed up as: 
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           𝑚𝑖𝑛𝛾௖ሺ𝑦ሻ ൌ ห|𝑦 െ 𝑋𝜔ෝଵ
௖|ห, 𝑐 ൌ 1 … 𝐾                        (6) 

 
When refactoring a test sample based on sparse representation classifier, sparseness is paid 

attention to, but the locality of feature subspace is not taken into account, resulting in poor 
classification. For this defect, Fan [14] et al. propsed Weighted Sparse Representation Based 
Classification(WSRC). WSRC focuses on training samples similar to those to be tested, giving 
such samples more interpretation, and rejecting training samples with large differences in 
dictionaries, i.e. by weighting local information, can improve the accuracy of classification. 
WSRC calculates the Gaussian distance between the sample to be measured and all the training 
samples, using these distances as weight constraint training samples. Mathematically, Gaussian 
distance of the sample 𝑠ଵ and 𝑠ଶ are defined as: 

𝑑ሺ𝑠ଵ, 𝑠ଶሻ ൌ exp ሺെ
||𝑠ଵ െ 𝑠ଶ||ଶ

2𝜎ଶ ሻ 

Which, 𝜎 represents the width of the Gauss core. In this way, the WSRC objective function is 
further expressed as:  

𝜔ෝ଴ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛||𝐷𝜔||ଵ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ห|𝑦 െ 𝑋𝜔|ห ൏ 𝜀 

𝐷 ൌ ሾ𝑑ீ൫𝑦, 𝑙ଵ,ଵ൯, … , 𝑑ீሺ𝑦, 𝑙௞,௡ೖ
ሻሿ் 

After many tuning experiments, it is determined that the experimental parameters used in 
this paper are: 𝜀 ൌ 0.001, 𝜎 ൌ 1.5. 

3.2. Model	Evaluation	Indicators	

In order to measure the predictive performance of the two classification models, four more 
commonly used model evaluation indicators are used in this paper, namely Accuracy (ACC), 
Sensitivity (SN), Precision (PE) and Matthews correlation coefficient (MCC). Accuracy is the 
number of sample sets that are correctly identified as a comprehensive measure of model 
performance. Sensitivity is the ratio of positive samples predicted to be positive, accuracy is the 
proportion of positive samples in positive samples, and Matthews correlation coefficient is the 
degree of correlation between proteins that are inter-made before and after prediction. They 
are mathematically defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 

𝑃𝐸 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 

𝑀𝐶𝐶 ൌ   
𝑇𝑃 ൈ 𝑇𝑁 െ 𝐹𝑃 ൈ 𝐹𝑁

ඥሺ𝑇𝑃 ൅ 𝐹𝑃ሻ ൈ ሺ𝑇𝑁 ൅ 𝐹𝑃ሻ ൈ ሺ𝑇𝑃 ൅ 𝐹𝑃ሻ ൈ ሺ𝑇𝑁 ൅ 𝐹𝑁ሻ
 

In the upper class, TP (true positive) is the true positive number, i.e. the positive sample is 
predicted as a positive sample, the FP (false postive) is the false positive number, i.e. the negative 
sample is misjudged as a positive sample, TN (true negative) is the true negative number, i.e. 
the negative sample is predicted as negative, and the FN (false negative) is the false negative 
number, i.e. the positive sample is misjudged as a negative sample. 

4. MODEL	PREDICTION	RESULTS	AND	ANALYSIS	

This chapter will present experimental results for predicting protein interactions using 
weighted sparse presentation classifiers for Yeast and Human datasets. It will also be compared 
with some of the methods mentioned in this article. These include: comparative analysis of 
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random forest feature selection, comparative analysis of support vector machine prediction 
results, and comparative analysis of existing method prediction results.  

4.1. The	Result	of	the	Model	Prediction	

After many experiments, it was decided to use the average accuracy, sensitivity, accuracy and 
Matthews correlation coefficient of 5 fold cross-validation as the predictive performance of the 
model. The model's predictions on the Yeastdataset are shown in Table 2, where you can see 
that the model's prediction accuracy on the Yeast dataset is up to 97.78 percent. Average 
prediction accuracy, average sensitivity, average accuracy, and average Matthews correlation 
coefficients were 96.97%,97.51%,96.43%, and 93.91%, respectively, And the float between the 
results of 5 experiments is small, the model has a certain robustness. 

 
Table	2.	The results of the Yeast dataset experiment	

Testing set Acc(%) Sn(%) Sp(%) Mcc(%) 
Fold-1 96.24 96.98 95.71 92.49 
Fold-2 96.72 97.61 95.70 93.27 
Fold-3 97.78 97.81 97.62 95.56 
Fold-4 96.82 97.67 96.00 93.65 
Fold-5 97.30 97.48 97.10 94.60 

Average 96.97 97.51 96.43 93.91 

 
The model's predictions on the Human dataset are shown in Table 3, from which you can see 

that the model's prediction accuracy on the Human dataset is up to 96.27%, the average 
prediction accuracy, Average sensitivity, average accuracy, and average Matthews correlation 
coefficients were 95.5%, 96.83%, 93.2%, and 97%, respectively, and the results of 5 
experiments fluctuate less, the model has a certain robust type. 

 
Table	3.	The results of the Human dataset experiment 

Testing set Acc(%) Sn(%) Sp(%) Mcc(%) 
Fold-1 95.44 96.22 93.70 90.82 
Fold-2 95.07 96.33 93.15 90.14 
Fold-3 96.27 97.80 93.95 92.53 
Fold-4 95.19 97.22 92.13 90.38 
Fold-5 95.55 96.57 93.11 90.97 

Average 95.50 96.83 93.20 90.97 

4.2. Model	Performance	Comparison	

4.2.1 Evaluation of random forest feature selection 
In order to improve the prediction accuracy of the model, filter the effective features and filter 

the noise, the dimension of the feature vector is proposed above. In this regard, this section will 
devote some length to the validity of the feature selection method. Specifically, you compare a 
model that uses feature selection with a model that does not. With the other model parameters 
unchanged, the 546-dimensional feature is reduced, and the first 117-dimensional feature is 
trained and predicted according to the feature importance sorting mechanism, in which the 
accuracy of the prediction reaches a peak. The results of the experiment are shown in Table 4:  
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Table	4.	Yeast Dataset Feature Selection Comparison Experimental Results 
model dimension Acc(%) Sn(%) Sp(%) Mcc(%) 

original model 546 96.97 97.51 96.43 93.91 
dimension-lowering model 117 94.41 96.65 91.67 88.91 

 
It can be seen from the table that the model effect has improved significantly after feature 

selection, which shows that the method of selecting by use of feature is effective. 
4.2.2 Comparative analysis of the experimental results of the support vector machine 
Support vector machines (SVMs) are widely used in machine learning models that predict 

proteininteractions. In order to verify the predictive effect of the weighted sparse 
representation classifier, the classic SVM classifier is used as the control model. Because the 
dataset is non-linearly smearable, SVM uses radial base core functions for operations. Among 
them, the model parameters are calculated by grid search method, and their values are: 𝐶 ൌ
1.5, 𝛾 ൌ 3.56. This article compares the experimental results of WSRC and SVM on the Yeast 
dataset, as shown in Table 5: 

 
Table	5.	Yeast dataset WSRC and SVM comparison experiments result 

model Acc(%) Sn(%) Sp(%) Mcc(%) 

WSRC 96.97 97.51 96.43 93.91 
SVM 92.44 94.79 89.79 85.01 

 
As can be seen from the table, WSRC is more suitable for the characteristics of this article 

than SVM, and it is proved that WSRC is robust to noise. 
4.2.3 A comparative analysis of the experimental results of existing methods 
Many researchers have designed methods to predict protein interactions on the Yeast dataset 

and have made good predictions. To reflect the benefits of WSRC, we compared it with different 
approaches. The results are shown in Table 6. 
 

Table	6. Comparison of method results on the Yeast dataset	

model Acc(%) Sn(%) Sp(%) Mcc(%) 
WSRC+CTD 96.97 97.51 96.43 93.91 

SVM+LD 88.56 87.37 89.50 77.15 
HOG+SVD+RF [15] 94.83 92.40 97.10 89.77 

StackPPI [9] 94.64 92.81 96.46 89.34 
WSRC+PseAA [16] 92.50 95.87 88.82 86.09 

 
YiJie Ding et al. in 2016 proposed HOG+SVD+RF, is a new matrix-based coding method that 

uses integrated learning classification. The protein sequence is represented first by an 
alternative matrix (SMR), then by using a directional gradient histogram (HOG)and singular 
value decomposition (SVD)to extract features from the matrix, and finally by entering the 
feature vector into a random forest for classification.  

StackPPI was proposed by Cheng Chen et al. in 2020. The author constructs the feature 
operator using 7 feature coding methods, such as pseudoamino acid composition, 
autocorrelated descriptor, location-specific scoring matrix, and then uses XGBoost to reduce 
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dimension, and finally uses a stacked integrated classifier consisting of random forest, extreme 
random tree and logistic regression algorithm to predict.  

WSRC and PseAA were proposed by Yuan Huang in 2016. This method combines continuous 
wavelet transformation with pseudo-amino acid composition to construct features, and uses 
weighted sparse to represent classifier prediction interoperability.  

5. CONCLUSIONS	AND	PROSPECTS	
This paper first introduces the background knowledge and theory related to this article. 

These include the properties of protein physical and chemical, feature coding methods, feature 
selection methods, and the basic theory of weighted sparse representation classifiers. Then a 
weighted sparse representation model based on protein sequence feature extraction is 
proposed, and the process of modeling is: first obtain the protein sequence and construct the 
positive and negative samples, then carry out feature extraction and feature selection of the 
protein sequence, and finally use the weighted sparse to represent the classifier classification. 
Finally, the experimental results of 50% cross-validation are given, and the characteristic 
selection method, the classical support vector machine method and the existing method are 
compared and evaluated. It is proved that the feature coding algorithm and the prediction 
model are effectively combined, which provides a new way of thinking for the model selection. 

Although the accuracy of predicting protein interactions is high, there are some aspects that 
can be optimized. First, a more efficient feature coding algorithm can capture most of the 
information in the protein sequence while making it less relevant to existing coding features, 
such as the secondary structure of the protein. In this way, feature coding with large fusion 
differences may improve prediction accuracy. Second, the design of a reasonable integration 
strategy, the advantages of different classifiers, weaken the single classifier bias on data 
characteristics. Effective combination of different models is a problem that can be further 
explored. 
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