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Abstract 

In this paper, a cybernetic method is proposed for batch and instantaneous update of 
weights in neural networks. Using the popular Hamilton-Jacobi-Bellman (HJB) equation, 
a new law of optimal weights is generated. The main contribution of this paper is that for 
any neural network using HJB, a closed form solution with optimal cost and weight 
updates can be obtained. This approach has been compared with some of the best 
performance learning algorithms available. The results show that this method has better 
performance in computation time and effect. Benchmark data, such as 8-bit parity, 
breast cancer, and credit approvals, as well as 2D Gabor functions have been used to 
verify our claims, and this article introduces this approach using the decoder as an 
example. 
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1. Introduction 

Deep learning algorithms have recently become more and more popular and useful algorithms, but 

the success of deep learning or deep neural networks[1] is due to the endless emergence of neural 

network model architectures. In this paper, the author reviews the architecture development of deep 

neural networks in the past 18 years since 1998. 

 

 

Fig 1. The accuracy and complexity of the algorithms 
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On the axis of the graph we can see that the abscissa is the complexity of the operation, and the 

ordinate is the accuracy. At the beginning of model design, the greater the weight of the model, the 

higher the accuracy of the model. Later, after the appearance of network architectures such as ResNet, 

Googlenet, Inception, etc., the weight parameters of the model continue to decline when the same or 

higher accuracy is achieved. Now, it's important to note that it doesn't mean that the more to the right 

of the x-coordinate, the more time it takes. The time is not counted here, but the model parameters 

and the accuracy of the network are compared vertically and horizontally. 

In 1943, psychologist Warren McCulloch and mathematical logician Walter Pitts put forward and 

gave the concept of artificial neural network and the mathematical model of artificial neural network 

in their joint paper A Logical Calculus of the Ideas Immanent in Nervous Activity, which initiated 

the era of artificial neural network research. In 1949, psychologist Donald Hebb described The rules 

of neuronal learning in a paper he published in The Organization of Behavior. 

Further, American neuroscientist Frank Rosenblatt proposed a machine that can simulate human 

perception, and called it "perceptron". In 1957, at the Cornell Aeronautical Laboratory, he 

successfully completed the simulation of a perceptron on an IBM704, and in 1960, he implemented 

a perceptron-based neural computer -- Mark1, which could recognize some English letters. 

In 1985, Geoffrey Hinton used multiple hidden layers to replace the original single feature layers in 

the perceptron, and used a back-propagation algorithm (proposed in 1969, practicable in 1974) to 

calculate network parameters 

In 1989, Yann LeCun [2][3] et al. used deep neural networks to recognize the handwritten characters 

of postcodes in letters. Later, LeCun further used CNN (Convolutional Neural Network) [4][5][6] to 

complete handwritten character recognition of bank checks, and the recognition accuracy reached 

commercial level. Although the algorithm was a great success, it took about three days to train on the 

dataset. 

The network structure is divided into input layer, multiple hidden layers and output layer. The weight 

is initialized randomly before the network is trained, and the network parameters are adjusted by the 

BP algorithm [7][8][9]. 

The BP algorithm doesn't always work well. Even with stochastic gradient descent, BP algorithm is 

still easy to fall into local optimal solution. And with the increase of network layers, the difficulty of 

training becomes more and more difficult. 

In 2006, Hinton proposed the Deep Belief Network (DBN)[10][11][12], a deep network model. Use 

a greedy unsupervised training approach to problem solving and get good results. The training method 

of DBN (Deep Belief Networks) reduces the difficulty of learning hidden layer parameters. The 

relationship between the training time and the size and depth of the network is almost linear. In 2010, 

the U.S. Defense Department's DARPA plans to fund its first deep learning program. 

In 2011, Microsoft Research and Google speech recognition researchers successively used DNN 

technology to reduce the error rate of speech recognition by 20%-30%, which is the biggest 

breakthrough in this field in 10 years 

In 2012, Hinton reduced ImageNet's top five error rate for image classification problems from 26 

percent to 15 percent. In the same year, Andrew Ng and Jeff Dean built the Google Brain project, 

using the parallel settlement platform containing 16,000 CPU cores to train the deep network of more 

than 1 billion neurons, making a breakthrough in the field of jade and jade recognition and image 

recognition. 

In 2013, DNN Research, the company Hinton founded, was acquired by Google, and Yann LeCun 

joined Facebook's AI lab. 

In 2014, Google increased the accuracy of language recognition from 84 percent in 2012 to 98 percent 

today, and the accuracy of language recognition on mobile Android systems increased by 25 percent. 

In terms of face recognition, Google's Facenet system achieved 99.63% accuracy on the LFW[13][14]. 
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In 2015, Microsoft used the residual learning method of deep neural network to reduce the 

classification error rate of ImageNet to 3.57%, which was lower than the human eye recognition error 

rate of 5.1% in similar experiments, and the neural network it used has reached 152 layers. 

Since the emergence of BP algorithm, fast convergence has been the focus of researchers. One of the 

earliest works of Hagan and Menhaj [2] was to use Levenberg-Marquardt (LM) algorithm [15][16][17] 

to train the weights of multi-layer networks in batch mode. In order to improve the performance and 

convergence speed of BPS algorithm [18], several improved algorithms are proposed. 

In this paper, we suggest using Hamilton-Jacobi-Bellman (HJB) equation for solving this problem. 

The HJB equationcomes from dynamic programming, which is a popularapproach for optimal control 

of dynamical systems. In the proposed scheme, the weight update law has beenconverted into a 

control problem and dynamic optimizationhas been used to derive the update law. The derivation 

ofthe HJB based weight update law is surprisingly simple andstraightforward. The closed form 

solution for the optimalcost and optimal weight update law have simple structures.The proposed 

approach has been compared with some of theexisting best performing learning algorithms and is 

found tobe faster in convergence in terms of computational time. 

2. HJB based offline learning of BP 

2.1 2.1.1 BP Neural Network 

Consider two layers of BPNN with N0 −N1− N2 structure, where N0, N1 and N2 represent the 

number of neurons in the input layer, hidden layer and output layer, respectively. 

where,𝑖0 𝑖1 𝑖2 index the neurons in the input, hidden andoutput layers, respectively. 

The output 𝑦𝑝 ∈ ℝ𝑁𝑙  (𝑙  is the index of output layer) for agiven input pattern 𝑥𝑝 ∈ ℝ𝑁0
 can be 

written as, 

𝑦𝑝 = 𝑓(𝑤
∧

, 𝑥𝑝)                                  (1) 

Here,𝑤
∧

∈ ℝ𝑁𝑤  is the vector of weight parameters involvedin the BPNN to be trained, with total 

𝑁𝑤weight parameters.The derivative of 𝑦 w.r.t. time 𝑡 is 

𝑦
•

𝑝 =
𝜕𝑓(𝑤

∧
,𝑥𝑝)

𝜕𝑤
∧ 𝑤

∧
•

= 𝐽𝑝𝑤
∧
•

                              (2) 

where, 𝐽𝑝 =
𝜕𝑓(𝑤

∧
,𝑥𝑝)

𝜕𝑤
∧  is the Jacobian matrix, whose elements are 𝐽𝑝,𝑖𝑗 = 𝜕𝑦𝑝,𝑖/𝜕𝜔𝑗 . The desired 

output is given by 𝑦𝑝
𝑑 = 𝑓(𝑤, 𝑥𝑝) and its derivative with respect to time is 

𝑦
•

𝑝
𝑑 = 𝐽𝑝𝑤

•
= 0                                 (3) 

The estimation error is 𝑒𝑝 = 𝑦𝑝
𝑑 − 𝑦𝑝 and its derivative w.r.t. time 𝑡 is 

𝑒
•

𝑝 = 𝑦
•

𝑝
𝑑 − 𝑦

•

𝑝 = −𝐽𝑝𝑤
∧
•

,  𝑦
•

𝑝
𝑑 = 0                          (4) 

The optimization of the neural network weights is formu-lated as a control problem. 

𝑒
•

𝑝 = −𝐽𝑝𝑤
∧
•

= −𝐽𝑝𝑢                               (5) 

The control input updates the weights as 𝑢 = 𝑤
∧
•

. 

In the batch mode, all the patterns are learnt simultaneously. Hence, the dynamics can be written 

jointly as 

𝑒
•

= −𝐽𝑢                                   (6) 

where,𝑒 = [𝑒1
𝑇, 𝑒2

𝑇 , . . . , 𝑒𝑁𝑝

𝑇 ]𝑇 , 𝐽 = [𝐽1
𝑇 , 𝐽2

𝑇 , . . . , 𝐽𝑁𝑝

𝑇 ]𝑇 . Hence,𝑒 is an𝑁𝑙𝑁𝑝 × 1 vector,𝐽  is an 𝑁𝑙𝑁𝑝 ×

𝑁𝜔 matrix and 𝑢 is an 𝑁𝜔 × 1 vector. 
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2.2 Optimal Weight Update 

the cost function is defined over time interval (𝑡, 𝑇] as 

𝑉(𝑒(𝑡)) = ∫ 𝐿(𝑒(𝜏), 𝑢(𝜏))
𝑇

𝑡
𝑑𝜏                          (7) 

Where  

𝐿(𝑒, 𝑢) =
1

2
(𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢)                           (8) 

With 𝑅 as a constan 𝑁𝜔 × 𝑁𝜔 matrix. Here,𝑡 signifiesthe iterations to update 𝑤. Our goal is to find 

an optimal weight update law 𝑢(𝑡) which minimizes the aforementioned cost function. We can 

assume 𝑇 → ∞. We use the following formulation which is popularly known as the Hamilton-Jacobi-

Bellman (HJB) equation . 

𝑚𝑖𝑛
𝑢

{
𝑑𝑉∗

𝑑𝑒
𝑒
•
(𝑡) + 𝐿(𝑒(𝑡), 𝑢(𝑡))} = 0                        (9) 

Putting the expressions for 𝑒
•
(𝑡) and 𝐿(𝑒(𝑡), 𝑢(𝑡)) from eqs.(6) and (8), respectively, 

𝑚𝑖𝑛
𝑢

{−
𝑑𝑉∗

𝑑𝑒
𝐽𝑢(𝑡) +

1

2
𝑒(𝑡)𝑇𝑒(𝑡) +

1

2
𝑢(𝑡)𝑅𝑢(𝑡)} = 0               (10) 

Here, 
𝑑𝑉∗

𝑑𝑒
 is 1 × 𝑁𝑙𝑁𝑝 vector. Differentiating with respect to 𝑢, we get the optimal update law as 

𝑢∗(𝑡) = 𝑅−1𝐽𝑇(
𝑑𝑉∗

𝑑𝑒
)𝑇                            (11) 

In order to find the expression for (
𝑑𝑉∗

𝑑𝑒
), we put the optimal 𝑢 from eq. (11) in eq. (10), 

𝑒(𝑡)𝑇𝑒(𝑡) − (
𝑑𝑉∗

𝑑𝑒
)𝐽𝑅−1𝐽𝑇(

𝑑𝑉∗

𝑑𝑒
)𝑇 = 0                      (12) 

A proper solution of eq. (12) should lead to 𝐽𝑅−1𝐽𝑇 to be positive definite. 

This is an under-determined system of equations. However, the optimal input must stabilize the 

system. The stability of thesystem can be analyzed with the help of a Lyapunov functiondefined as 

𝜐(𝑒) =
1

2
𝑒𝑇𝑒                                (13) 

The equilibrium point 𝑒 = 0 is stable if 𝜐
•
(𝑒) is negative definite. 

                                   (14) 

                                   (15) 

                               (16) 

If one selects the following form of 𝑑𝑉∗/𝑑𝑒, 

𝑑𝑉∗

𝑑𝑒
= 𝑒(𝑡)𝑇𝐶(𝑡)𝑇                               (17) 

where, 𝐶(𝑡) is chosen to be a positive definite matrix, then 𝜐
•
(𝑒(𝑡)) becomes negative definite. In 

order to find the expres-sion for 𝐶(𝑡), we substitute eq. (17) in eq. (12), 

𝑒(𝑡)𝑇(𝐼 − 𝐶(𝑡)𝑇𝐽𝑅−1𝐽𝑇𝐶(𝑡))𝑒(𝑡) = 0                      (18) 

where, 𝐼 is 𝑁𝑝 × 𝑁𝑝 identity matrix. For this to be true forall 𝑒(𝑡), 

𝐶(𝑡)𝑇𝐽𝑅−1𝐽𝑇𝐶(𝑡) = 𝐼                              (19) 

To find a solution for 𝐶(𝑡), we decompose 𝐽𝑅−1𝐽𝑇 = 𝑈𝛴𝑈𝑇 into eigenvectors 𝑈 and a diagonal 

matrix of eigenval-uesΣ. Since, 𝐽𝑅−1𝐽𝑇  is a symmetric positive definite matrix, 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼 

and all eigenvalues are positive. Now, 𝐶(𝑡) can assume the following form to satisfy eq. (19) 

𝐶(𝑡) = 𝑈𝛴−
1

2𝑈𝑇                               (20) 
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This form assures 𝐶(𝑡) to be positive definite, so that thesystem is stable around 𝑒 = 0. However, 

for numerical stabil-ity while implementation, a small positive term (= 10−4𝐼) isadded to 𝛴so as to 

avoid numerical instability. 

Finally, we get the optimal weight update law by combining equations (11) and (17) as 

𝑤
∧
•

= 𝑢∗(𝑡) = 𝑅−1𝐽𝑇𝐶(𝑡)𝑒(𝑡)                          (21) 

where, 𝐶(𝑡) is given by eq. (20).  

For the BPNN considered in eqs. the Jacobian canbe obtained as follows. For the output layer, 
𝜕𝑓(𝑤,𝑥𝑝)

𝜕𝜔𝑖2𝑖1

= 𝑦𝑝,𝑖2
(1 − 𝑦𝑝,𝑖2

)𝑣𝑖1                          (22) 

and for the hidden layer, 
𝜕𝑓(𝑤,𝑥𝑝)

𝜕𝑤𝑖1𝑖0

= ∑ 𝑦𝑝,𝑖2
(1 − 𝑦𝑝,𝑖2

)𝑖2
𝜔𝑖2𝑖1

𝑣𝑖1
(1 − 𝑣𝑖1

)𝑥𝑝,𝑖0
               (23) 

In the online mode, the weight vector is updated with each input pattern. In this case, the network 

dynamics can be presented as 

𝑦 = 𝑓(𝑤
∧

)                                 (24) 

where the network output is simply observed as a function ofnetwork weights only. Here the desired 

output 𝑦𝑑 is observedand the network response is compared to find 

𝑒 = 𝑦𝑑 − 𝑦                                 (25) 

The problem is to find 𝑢 so as to minimise 

𝑉(𝑒(𝑡)) = ∫
1

2
(𝑒𝑇𝑒 + 𝑢𝑇𝑅𝑢)𝑑𝜏

∞

𝑡
                        (26) 

One should note that this cost function is not pertaining to any specific pattern rather the network is 

subjected to various inputs while the instantaneous errore is computed according to Eq. (25). The 

optimal instantaneous weight update law, as derived using the HJB equation and Lyapunov stability 

criterion, is given by 

                        (27) 

                             (28) 

With 𝑈 and 𝛴as the eigenvectors and eigenvalues of 𝐽𝑅−1𝐽𝑇 . 

3. Conclusion 

The efficiency of the proposed HJB based optimal learning scheme is substantiated with the help of 

several benchmark learning problems. Notably, the purpose of the presented work is to optimize a 

given cost function and not explicitly to design robust classification algorithms. 

An example of the method proposed in this paper for image processing is given below 

Fig 2 are the results of image processing by different methods. From left to right, they are Adadelta, 

Adagrad, Adam, LF and our proposed HJB approximation method, The HJB approximation method 

proposed in this paper has the best decoding efficiency of 76.83%. 

This section analyzes the convergence behavior of various algorithms used in this paper. It has been 

observed that the proposed HJB algorithm is much faster than the other algorithms for both online as 

well as offline learning. It will be useful at this stage to compare the computational complexity of one 

iteration of each of these algorithms. All the algorithms discussed in this paper are based on 

deterministic iterative update of weights. Moreover, all of these involve the calculation of the 

Jacobian J. They mostly differ in their weight update schemes, 𝑢. Certainly, a single iteration of HJB 

and LM schemes involves more computations than BP and LF schemes. However, the number of 
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iterations required for HJB and LM are significantly small as compared to those for BP and LM. 

Hence, the former ones take much less convergence time than the later ones 

HJB equation is well known for dynamic optimization. In this paper, the weight update process in 

BPNN has been formulated as a dynamic optimization problem. Applying HJB equations, the optimal 

weight update laws have been derived in both batch and online (instantaneous) modes.  

 

 

Fig 2. The results of five approximate methods 

 

This paper analytically analyzes the convergence behavior of various popular learning algorithms as 

why they are liable to be stuck in local minima. It is shown that the Lyapunov function drags the 

solution to the local minimum. The proposed scheme ensures faster convergence rate as compared to 

the existing schemes, including LM. Moreover, the weight update law using HJB equation has been 

derived for both offline as well as online modes, whereas LM can be applied only in the offline mode. 

Our study also shows thatthe proposed HJB scheme works well even with large network size, while 

the LM method deteriorates in performance as the size of the network increases, as also observed by 

Xie. 
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