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Abstract 

In the view of the traditional particle swarm optimization algorithm is easy to get into 
the slow speed convergence and long search time when it solved the high-dimensional 
mathematical problems. In order to solve the problem that the independent adjustment 
of inertia weight and learning factor weakens the unity and intelligence of pso, the 
particle state factors is added to inertia weights and learning factors, A pso combining 
inertial weights and learning factors is presented.Based on the method of linear change 
of inertia weight, this algorithm adds the variable operator of inertia weight, which 
makes the inertia weight change dynamically with the iteration stage and aggregation of 
particles.And on the basis of simplifying particle swarm optimization, asynchronous 
transformation learning factor is added to make the position update formula 
dynamically updated according to the search situation of particles .Finally, the improved 
algorithm is compared with the existing algorithm on four test functions, and it is proved 
that the improved algorithm has obvious improvement on the optimization accuracy, 
iteration speed and convergence success rate. 

Keywords 
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1. Introduction 

Particle swarm optimization (PSO) is a kind of stochastic evolutionary optimization algorithm based 

on swarm intelligence proposed by Kennedy and Eberhart in 1995[1].PSO algorithm is quickly 

accepted and applied in electromagnetic optimization [2-3], parameter optimization [4-5] and other 

fields due to its advantages of fewer parameters to be adjusted, fast convergence speed and high 

accuracy.Due to the shortcoming of particle swarm optimization (pso), many improvements have 

been made[6-8].There are also many improvements to particle swarm optimization and the 

improvement of inertia weight and learning factor is the most simple and quick.Shi et al. introduced 

inertia weights that decrease linearly with the number of evolution[9], which greatly improved the 

running speed and search ability of PSO algorithm.There are linear and nonlinear methods to improve 

the inertia weight[9-10].There are many similar selection strategies for learning factors[11-12].All 

these methods improved theglobal and local search capability of the algorithm.  

However, the independent adjustment of parameters such as inertia weight and learning factor 

weakens the intelligence of the algorithm. Based on the analysis of the improvement of particle swarm 

optimization algorithm in the above literatures, this paper links inertia weight and learning factor 

through particle state factor, and gives a simplified particle swarm optimization algorithm integrating 
weight and learning factor. The improved algorithm is compared with the linear particle swarm 
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optimization (LPSO) and the simplified particle swarm optimization (SPSO) to prove the 

effectiveness of the improved algorithm.  

2. Particle state factor and particle aggregation factor 

First initialize a swarm of particles ),,( 21 iniii xxxX = in each iteration, particles update its own speed 

and position through the individual extreme value pbest and the global extreme value gbest ,the 

updating formula is shown in equations (1) and (2): 
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1c and 2c are velocity factors, and usually they are both 2. 1rand and 2rand are random numbers 

distributed between [0,1]. k is the current number of iterations. idv is the speed of particles. w is the 

inertia weight. In each iteration, the particle compares the current value with the optimal value to 

update the global optimal value. Therefore, the value of global optimal value e is determined by the 

change of individual extreme value, and the relationship between global and individual also reflects 

the current state of particles. In the minima problem, the individual extremum is less than the global 

optimal value, which is also less than the average value. The average reflects the average mass of all 

the particles. Define avgi ffF = as the particle state factor.  

if
is the current fitness value of the particle. avgf is the average fitness value of the particle, and its 

mathematical formula is defined as 
=
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1 . F reflects the current search state of the particle, 

it means that the larger F is, the further the current particle is from the optimal solution. The smaller 

F is, the closer the current particle is to the optimal solution.  
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bestf is the optimal fitness value of the particle, that is the global optimal value. Therefore, the formula 

of particle aggregation factor is defined as follows:  
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According to the formula, ]1,0[S .We call S the aggregation factor. To a certain extent, S reflects 

the aggregation of particles, which reflects the diversity of particles. The larger S  is, the farther the 

particle is from the optimal value and the more dispersed it is. On the contrary, the smaller S  is, the 

more concentrated the particles are. 

3. An improved strategy of integrating weights and learning factors 

3.1 The change of inertia weight  

Shi[7] et al proposed a method of linear decline, the experiment shows that although LDW improves 

the speed and accuracy of function optimization, the method of inertia weight changing with the 

number of iterations is only effective near the optimal solution. On the basis of LDW inertia weight 

change formula, the following formula is proposed:  

])([ maxminmaxmax RRwwww −−=                       (3) 

  is an inertia weight variation operator whose size is determined by the aggregation of particles. 

Combined with s-shaped curve, namely Sigmoid function, the change formula proposed is as follows: 

 )1(1 1 se−+ . 
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The reciprocal function sigmoid decrements in the domain and early fast decline which is conducive 

to fast search and determine values closer to pbest .Late slow decline which beneficial to search 

carefully after particle concentration and improve the accuracy of the algorithm. The larger s  is, the 

farther the particle is from the optimal value and the more dispersed it is. At this time, should be taken 

as a smaller value to enhance the local search ability. On the contrary, the smaller s  is, the more 

concentrated the particles are,  should be given a larger value to enhance the global search capability.  

Specific adjustment strategies of  are as follows:  
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1H and 2H  are the threshold values of particle aggregation degree, and meet 21 HH  ,when the 

threshold value is exceeded, set min and max  .  

3.2 Improvement of position update formula  

The simplified particle swarm optimization eliminates the velocity term and reduces the second order 

of the differential equation to the first order, which greatly speeds up the search speed of the algorithm 

and makes the algorithm more simple and efficient.  

On the basis of this, some scholars put forward the pbest and gbest  in the linear combination 

substitution formula using the global optimal value and the local optimal value. Its improvement is 

publicized as follows:  
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1c  and 2c are fixed values. In order to enhance the unity and intelligence of the evolutionary process 

when adjusting inertia weights and learning factors, in this paper, a factor of inertia weight is taken 

as the main parameter of the change of learning factor, particle state factor, which strengthened the 

relationship between inertia weight and learning factor and to better adapt to complex nonlinear 

changes. Specific adjustment strategies for learning factors 1c and 2c are as follows:  
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inic1 and i inic2 are the initial values of 1c  and 2c  . ifinc  and finc2 represent the termination values. 1c  

is a learning factor that determines the ability of particles to "social cognition". 2c  is the learning 

factor that determines the particle's ability to "recognize itself". F measures the search state of the 

particle during the search process. When the problem is the minimum problem, if F is larger, it 

means that the particle is farther away from the optimal solution. In this case, 1c should take a larger 

value and 2c should take a smaller value. This approach makes the particle learn from  

the best of the self to the best of the society, and it strengthen the global search ability; If F is smaller, 

it means that the particle is closer to the optimal solution. At this time, 1c  should be a smaller value 

while 2c  should be a larger value, so that the particle can be closer from the optimal learning of 

society to the optimal learning of self and strengthen the local search ability.  

3.3 The flow of algorithm 

The improved algorithm flow is as follows:  
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Step1: initialize the particles, make their values constrained within the specified range, and make each 

particle have position vector iX  ;  

Step2: calculate the fitness value of the particle, set if as the fitness value of the current position of 

the particle, and calculate that avgf is the average fitness value.  

Step3: compare the fitness value of the particle with all the positions of the particles it passes through, 

and take the better one as the current best position, denoted as pbest ;  

Step4: compare the fitness value of the particles with the positions all the particles have passed 

through, and take the better one as the global best position, denoted as gbest ;  

Step5: if the algorithm reaches the maximum number of iterations, execute step 8; otherwise, execute 

step 6;  

Step6: update the position formula of all particles successively according to formula (4),calculate the 

inertia weight according to formula (3),Calculate the learning factor according to formula 

(5),calculate the fitness value;  

Step7: increase the number of iterations by one and execute step 3;  

Step8: reach the maximum number of iterations and output gbest .  

4. Simulationg test and analysis 

4.1 Experimental design 

In order to verify the effectiveness of the improved algorithm, SPSO and LPSO are compared with 

the DSPSO proposed in this paper. Four test functions are compared in terms of convergence accuracy, 

convergence speed and dimension.  

In the experiment, the population size was 30. The number of iterations is 1000.Theinertia weight in 

LPSO decreases linearly from 0.9 to 0.4.Parameter setting of DSPSO: 9.0max =w , 4.0min =w  .  

This experiment will test and analyze from the following three aspects:  

(1) the experiment calculated the average value of the four functions running 50 times in 3, 10 and 

30 dimensions under the three algorithms, and analyzed the convergence accuracy of each dimension.  

(2) compare the convergence rates of the four algorithms through the average fitness evolution curve.  

(3) under the condition of fixed convergence accuracy and specified number of iterations, the success 

rates of the four functions under the three algorithms were compared.  

Test functions are as follows:  

Tab.1 The information of test function  
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4.2 Analysis of test results  

4.2.1 Comparison of algorithm convergence accuracy  

In this paper, the four functions were run for 50 times in 3 dimensions, 10 dimensions and 30 

dimensions respectively to obtain the average value. The optimal value and average value are shown 

in table 2 below.  

From table 2, on a macro level, DSPSO is superior to SAPSO and LPSO in terms of functions,

431 ,, fff no matter in 3, 10 or 30 dimensions. For the function 2f ,the optimal value of all three 

algorithms is the same, but the average value is different: The accuracy of SPSO and LPSO in 3 and 

30 dimensions is about 10-6,however, the optimal value and average value of DSPSO are all 8.8818E-

16 in 3, 10 or 30 dimensions. This means that DSPSO has good stability for processing f2, a function 

used for many local optimal values and independent of independent variables.  

As the dimensions of the four functions increase, the functions become more complex. The search 

accuracy of SPSO and LPSO gradually decreased, indicating that the search ability of SPSO and 

LPSO for high-dimensional functions was gradually weakened. In the case of DSPSO, in the function, 

the value of DSPSO is always 8.8818e-16, reflecting the stability of DSPSO. In the function 4f , the 

accuracy of DSPSO varies from 4610− to 10-6.but it is far better than other two kinds of algorithms in 

the same dimension. In conclusion, the DSPSO algorithm has a good effect on search accuracy and 

solving function problems of high latitude.  

a is the average, b is the optimal value  

Tab 2. The results of function test  

函数 维数 理论值  LPSO SPSO DSPSO 

 

 

 

1f  

3 0 
a 1.1891e-69 3.0384e-40 1.867e-217 

b 3.58627e-67 4.4292e-32 1.424e-209 

10 0 
a 0.033706 3.0988e-17 1.3376e-26 

b 0.0956932 2.4708e-15 2.9167e-26 

30 0 
a 4.5745 2.4585e-05 4.3675e-07 

b 2.435554 0.6028495 4.6572e-06 

 

 

2f  

3 0 
a 8.8818e-16 8.8818e-16 8.8816e-16 

b 5.8565e-06 2.9282e-06 8.8818e-16 

10 0 
a 8.8818e-16 8.8818e-16 8.8818e-16 

b 0.0002941 0.0001475 8.8818e-16 

30 0 
a 8.8818e-16 8.8818e-16 8.8818e-16 

b 5.7355e-06 2.8677e-06 8.8818e-16 

 

 

3f  

3 0 
a 0 0 0 

b 0 0 0 

10 0 
a 0.5436 0.35857 0.024737 

b 1.617722 0.63957 0.085173 

30 0 
a 1.384 0.64322 1.9069e-07 

b 5.31914 0.82533 0.019103 
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4f  

3 0 
a 2.3358e-31 2.3358e-31 3.4126e-52 

b 2.3358e-31 3.0728e-30 2.3358e-46 

10 0 
a 5.1957e-32 6.0994e-28 4.7116e-32 

b 6.7122e-09 0.12442 4.7551e-32 

30 0 
a 7.3992e-09 0.73519 1.1869e-08 

b 0.02073 2.680078 4.7930e-06 

4.2.2 Comparison of algorithm evolution speed  

The fitness evolution curve of the four functions is as follows:  

                        

Fig. 1. fitness evolution curve of function f1               Fig. 2. fitness evolution curve of function f2 

 

                        

Fig. 3. fitness evolution curve of function f3        Fig. 4. fitness evolution curve of function f4 

  

In figure 1, since the DSPSO algorithm completed the iteration around 600 times, SPSO and LPSO 
did not complete the iteration. The optimal iteration value after the program is run is shown in figure 

5.  

 

 

 

Fig.5. The optimal value of function f1 

It can be seen from figure 1 and figure 5 that DSPSO completed iteration in 600 with an accuracy 

of10-81, much higher than that of SPSO and LPSO.SPSO and LPSO did not complete the iteration 

within 1000 times, indicating that the search speed of DSPSO is much higher than the other two 

algorithms. In figure 2, SPSO fell into local optimization early, and the final convergence accuracy 

of DSPSO and LPSO was the same. However, DSPSO completed the iteration at 200, while LPSO 

successfully completed the iteration at 650, and the speed was lower than that of DSPSO. In figure 3, 

both speed and accuracy are better than the other two algorithms. In figure 4, SPSO fell into local 
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optimization early. In the two algorithms DSPSO and LPSO, it can be seen from the slope that the 

search speed of DSPSO is better than LPSO, and the precision is slightly better than LPSO.  

4.2.3 Comparison of algorithm success rate 

Each function is simulated 50 times, the number of iterations is 1000.When each function does not 

converge when it reaches the set number of iterations, the convergence is considered to fail.The 

success rate of convergence is analyzed in the following table.  

Tab.3 .The success rate of function  

函数 算法 

成功

收敛次

数 

成功

率(%) 
函数 算法 

成功收

敛次数 

成功

率(%) 

1f

 

SPSO 25 50 
3f

 

SPSO 22 44 

LPSO 33 66 LPSO 33 66 

DSPSO 30 60 DSPSO 47 94 

2f  

SPSO 7 14  

 

4f  

SPSO 9 18 

LPSO 19 38 LPSO 48 96 

DSPSO 50 100 DSPSO 50 100 

 

1f is unimodal function, 2f 、 3f 、 4f  is bimodal functions. As can be seen from the above table, 

DSPSO algorithm has no great advantages over SPSO and LPSO when dealing with single-peak 

function problems like 1f  .However, on the problem of 2f  , 3f  and 4f  multi-peak, the success rate 

of DSPSO algorithm is significantly higher than that of the other two algorithms. In conclusion, the 

improvement of APSO algorithm has obvious advantages in dealing with multi-peak complex 

function problems.  

5. Conclusion 

After experimental analysis, simplified particle swarm optimization algorithm with weight and 
learning factor is proposed. The inertia weight and learning factor are connected by the particle state 

factor, which enhances the unity and intelligence of the algorithm. The local and global searching 

ability of the algorithm is improved and the precision searching speed of the algorithm is accelerated. 

In the future algorithm research, group algorithm should be applied to practical engineering, such as 

motor control parameter adjustment, to reduce overshot.  
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