
 

 

125 

International Core Journal of Engineering 

ISSN: 2414-1895 

Volume 6 Issue 5, 2020 

DOI: 10.6919/ICJE.202005_6(5).0020 

Two Dimensional Compressed Sampling Reconstruction of 
Hyperspectral Images based on Spectral Prediction 

Li Wang, Wei Wang, Boni Liu 

Department of Electronic Engineering, Xi'an Aeronautical University, Xi'an Shaanxi 710077, 
China. 

 

Abstract 

The development of compressive techniques of hyperspectral images (HSI) becomes 
critical due to the limitations of the requirements of data storage, transmission and 
processing. Recently, Compressed Sampling (CS) has been used for hyperspectral 
imaging for its ability to recover the original data exactly under certain condition at a 
much lower sampling rate than Nyquist rate. In this paper, a residual reconstruction 
algorithm incorporating with two dimensional compressed sampling (2DCS) for 
Hyperspectral images is proposed to improve the performance of reconstruct algorithm. 
In the reconstruction process, spectral prediction is introduced for the strong spectral 
correlation between hyperspectral image bands. The experimental results reveal that 
the proposed technique achieves significantly higher quality than a straightforward 
reconstruction that reconstructs the hyperspectral images band by band independently. 
Meanwhile, the comparison between 2DCS and block-based compressed sampling (BCS) 
is developed and the results demonstrate that the superiority of 2DCS over BCS is in 
terms of high PSNR with respect to sampling rate. 
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1. Introduction 

Hyperspectral images contain rich two-dimensional spatial geometric information and one-

dimensional spectral information, which are suitable for the fields of target detection and recognition, 

image classification, etc. [1]-[6]. The resultant large volume of data collected by such sensors 

constitutes great challenges to computer processing, storage and transmission. For instance, an image 

scene acquired by the Airborne Visible/Infrared imaging Spectrometer (AVIRIS) consists of about 

140 MB. That is why the compression of hyperspectral images (HSI) becomes more and more urgent, 

particularly for those images that are to be transmitted directly to the ground and distributed to users. 

the traditional compressive algorithms have high-complexity encoders, poor error-resilient 

performance, and the computational complexity is exponential growing with the dimension of image 

increasing, which are not suitable for the application of hyperspectral images. 

Recent years have seen significant interest in the paradigm of compressed sensing (CS) [7]-[9] which 

permits, under certain conditions, signals to be sampled at sub-Nyquist rates via linear projection onto 

a random basis while still enabling exact reconstruction of the original signal. Due to the simplicity 

and easy implementation of the measurement process at the sampling process, the CS framework is 

a natural fit for hyperspectral image compression, which requires low complexity encoding and could 

solve the difficulty of storage and transmission effectively. 
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When using CS theory in the compressed of hyperspectral images [10]-[13], one of the primary 

challenges is the large computational cost typically associated with reconstruction from incomplete 

sampled data and the other challenge is how to improve the quality of reconstructed image via making 

use of the characteristic of hyperspectral images. In the existing reconstruction algorithms, most 

methods reconstruct the images band by band independently without considering the correlation 

between adjacent bands. In literate [14], a reconstruction algorithm based on interband prediction and 

joint optimization is proposed to use linear prediction to remove the correlations among successive 

bands. Distributed CS [15] uses the reconstructed bands as edge information to improve other bands. 

Three-dimensional CS has been adapted to hyperspectral images to decrease the spectral correlation 

[16]. A compressed sensing projection and reconstruction algorithm for hyperspectral images which 

utilizes the spatial correlation and spectral correlation is proposed in [17], and the algorithm shows 

higher reconstruction quality images as well as lower coding complexity. 

Fowler proposed a simple block-based CS (BCS) reconstruction [18] incorporating considering the 

motion estimation and compensation to improve the reconstruct quality. But the drawback of BCS is 

typically a reduced quality of image reconstruction, so how to improve the reconstruct algorithm and 

reduce the computational burden is the focus because the performance of the reconstruct algorithm 

determines the quality of the reconstructed image and the quality of reconstructed image influents the 

application of HSI. In this paper, we are dedicated to improve the performance of reconstruct 

algorithm via taking advantage of spectral correlation between adjacent bands of HSI. 

This paper is organized as follows. Section 2 presents the principle theory of compressed sensing, the 

simple measurement method and recovery problem are described. Section 3 develops the proposed 

reconstruction method. Firstly, the two dimensional compressed sampling method is presented. Then 

the framework of the proposed method is given and the steps of residual reconstruction are listed with 

introducing spectral prediction. The experimental results are given in Section 4 to test the 

performance of the reconstruct algorithm and section 5 gives the concluding remarks. 

2. Principle Theory of Compressed Sampling 

In brief, the new field of compressed sensing has given us a fresh look at data acquisition, one of the 

fundamental tasks in signal processing. The message of this theory can be summarized succinctly: 

the number of measurements we need to reconstruct a signal depends on its sparsity rather than its 

bandwidth. The core idea of compressed sensing is that if a signal or image of interest is sparse or 

compressible in some domain, then it can be reconstructed accurately from very few (relative to the 

dimension of the signal or image) non-adaptive measurements. More specifically, suppose that we 

want to recover real-valued signal x  with length N  from M  samples such that NM  . In other 

words, we want to recover x  from: 

xy =                                   (1) 

Where, y  is the measurement value, its length is M , and   is an NM   measurement matrix with 

sampling rate, or subrate, being NM=SR . 

Recovering x  from y is then a linear inverse problem. Because of the number of unknowns is much 

larger than the number of observations, the equation is underdetermined, so recovering every NRx  

from its corresponding MRy  is impossible in general. However, if x  is sufficiently sparse or 

compressive in some domain, several methods for recovering sparse x  from the limited number of 

measurements have been proposed. Here, we only give one example of solving this problem. The 

above problem can be transformed into a minimum 0l  norm optimization problem. 

xytosubjectxx ==
0

minargˆ                        (2) 

There are several issues that arise when the signal x  is an image. From the perspective of practical 

implementation, the dimensionality of the measurement matrix in equation (1) grows very quickly as 

the size of image x  increases due to the multidimensional nature of image data. This leads to a huge 

memory required to store the sampling operator when   is implemented as a matrix within the CS 
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sensing process. Additionally, a large   yields a huge memory and computational burden within the 

CS reconstruction process. Meanwhile, the reconstruct performance effects the compressed sampling 

of HSI. Therefore, when using CS for hyperspectral images, how to look for an appropriate sampling 

matrix and a high performance reconstruct algorithm is the critical issue.  

In fact, there are many measurement matrices, such as gauss matrix, Bernoulli matrix, partial Fourier 

matrix, Toeplitz matrix and others. However, these matrices are random and could not be applied to 

the actual system. In order to solve this problem, we introduce the circulant sampling (CirS) to replace 

a random sampling ensemble with the advantages of easy hardware implementation, memory 

efficiency and fast decoding. It has been shown that CirS is competitive with random sampling in 

terms of recovery accuracy [19]. In the previous work [16], three dimensional compressed sampling 

(3DCS) method is proposed, in the sampling process, it considers the spatial and spectral correlation, 

so it needs large memory to store the sampling matrix. In this paper, two dimensional compressed 

sampling is used to save the memory requirement, and in the reconstruction process, spectral 

prediction is introduced to improve the reconstruct performance. 

3. Proposed Reconstruct Algorithm 

The architecture of the proposed algorithm is depicted in Figure 1, which makes use of the strong 

spectral correlation in the reconstruction process to improve the accuracy of the reconstruct algorithm. 

In the figure, all the basic formula are given and the procedures are clear. The figure introduces the 

proposed reconstruct algorithm using spectral prediction for residual reconstruction. In the framework, 

the hyperspectral images are sampled by 2DCS, and the bands are reconstructed by two dimensional 

total variation (2DTV) firstly. Then the residual reconstruct algorithm is applied using spectral 

prediction (SP) to improve the reconstruct performance. As shown in Figure 1, kx  and 1+kx  represent 

the two adjacent bands, and are seen as key band and non-key band, respectively. In the sampling 

process, ky  and 1+ky  are the measurements using 2DCS independently. In the reconstruction process, 

the key band and the non-key band are reconstructed by 2DTV independently and the result are kx̂  

and 1
ˆ

+kx . Then the spectral correlation is utilized to improve the performance of non-key band. The 

predict value of the non-key band is the linear combination of the reconstructed kx̂  and the 

reconstructed 1
ˆ

+kx . Then the residual is calculated from the measurements of original data 1+kx  and 

the predict value sp,1+kx . The last step is obtaining the reconstructed residual result through 2DTV and 

revising the predict value. Note that, the symbol iter  is the current iterative number, for the process 

is implemented in an iterative fashion. According to the spectral prediction and the sampling method, 

the proposed method is denoted as 2DCS-SP. 
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Figure 1. The architecture of proposed reconstruct algorithm. 
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3.1 Two Dimensional Compressed Sampling and Reconstruction 

Hyperspectral images are often piecewise smooth in 2D spatial domain, and each spatial image is 

compressible. To fully exploit such rich compressibility, circulant sampling is introduced to replace 

random sampling matrix with the advantage of fast coding. The 2DCS [14][16] consists of random 

convolution and random subsampling. One band image kx  convolves a random kernel H , denoted 

by kCx , where C  is the circulant matrix with H  as its first column. C  is diagonalized as 

( )FˆdiagF 1
HC

−= , where Ĥ  is the Fourier transform of H . Then the subsampling process is used on the 

kCx  by a random permutation ( P ) and a selecting factor kS . The final sampled data is expressed as 

kkk PCxSB = .Here, kS  does not change with band and the sampling matrix is same for each band.  

In 2D imaging CS, in order to use the piecewise smoothness in spatial domain, the total variation (TV) 

is often used to reconstruct the image from incomplete measurements. The widely-used form of TV 

is 21llTV , however, the 1l -norm based TV measure is proven to be better than 21llTV  in reducing the 

sampling rate. According to the analyses above, the two dimensional total variation (2DTV) problem 

in this paper would be formulated as: 

( )
1v1h2DTV kkk xDxDx += .                            (3) 

Where, hD  and vD  are the horizontal and vertical gradient operators.  

Thence, the reconstruct algorithm is to solve the following optimization problem: 

( ) kkkk ts
k

BPCxSx
x

=..2DTVmin .                          (4) 

By introducing weight parameters 1vh ==  and auxiliary parameters ( )RGG ,, vh= , Equation (3) 

could be employed in the form of Equation (5) as follows. This linearly constrained problem could 

be solved by augmented Lagrangian multipliers (ALM) [18] algorithm efficiently. 

kkkkkkkts

k

BPRSCxRxDGxDG

GG
GGGx

====

+

,,,..

min

vvhh

1vv1hh
,,, λvh

 .                      (5) 

3.2 Spectral Prediction  

Unlike natural images, hyperspectral images have two spatial dimensional and one spectral 

dimensional information. So it has two types of correlations, namely: 1) spatial correlation and 2) 

spectral correlation. Among the existing methods, most of them have consider their spatial correlation 

to improve the performance of the sampling or reconstruct algorithm. But it may not be enough to 

independently apply CS theory to each band without exploiting the strong spectral correlation 

between hyperspectral images. The spectral correlation may be another class constraint in the 

recovery optimization problem. Specially, the spectral resolution in hyperspectral imaging is very 

high and could reach 10 nm. Therefore, in this paper, the non-key band could be predicted using the 

adjacent reconstructed band and is defined as: 

( ) ( )1*ˆˆ
1sp,1 ++= ++ iteriterkkk xxx .                           (6) 

3.3 Residual Reconstruction 

In this section, the residual reconstruct algorithm is described using one key and one non-key band 

as an example. It contains five steps, namely, spectral prediction, 2DCS measure, residual calculation, 

residual reconstruction and revising prediction. 

Before the reconstruction process, the key and non-key bands should be measured by 2DCS firstly: 

kk xy = .                                  (7) 

11 ++ = kk xy .                                 (8) 

1) Spectral prediction: As mentioned before, the spectral prediction of 1+kx  is sp,1+kx  obtained using 

equation (6). Before this prediction, the key band kx  and the non-key band 1+kx  should be 

reconstructed first using 2DTV reconstruct algorithm. 
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2) 2DCS measure: The measurements of sp,1+kx  is: 

sp,1sp,1 ++ = kk xy .                                (9) 

3) Residual calculation: Calculate the residual between the measure of original non-key band and the 

predict value: 

sp,11r,1 +++ −= kkk yyy .                              (10) 

4) Residual reconstruction: It is clear that r,1+ky  is the random projection of the residual r,1+kx , between 

the original bands and the spectral prediction; i.e., 

( ) r,1sp,11sp,11r,1 ++++++ =−=−= kkkkkk xxxxyy .                    (11) 

The recovery problem is written as: 

( ) r,1r,1r,1 ..DTV2min +++ = kkk ts xyx                         (12) 

5) Revising prediction. If the spectral prediction process is reasonably accurate, the residual r,1+kx  

should be much sparser than the original band 1+kx ; 2DTV reconstruction should thereby be much 

more effective at recovering the residual r,1+kx  from r,1+ky  than it is at recovering 1+kx  from 1+ky . Let 

r,1
ˆ

+kx  be the recovery from r,1+ky ; consequently, we can obtain an approximation reconstruction to 1+kx  

as: 

sp,1r,11
ˆˆ

+++ += kkk xxx
.                              (13) 

4. Experimental Results 

The performance of the proposed reconstruction algorithm is examined on two datasets from AVIRIS 

(http://aviris.jpl.nasa.gov). The images are cropped spatially to a small size, i.e., the rows and columns 

are 256. Furthermore, the abnormal and all zero bands should be removed to ensure the validity of 

the algorithm. Therefore, 188 bands of the all 224 bands are used in the experiments. In the following 

experiments, the two datasets are denoted as Cuprite1 and Cprite2, meanwhile, the 40th band as an 

example is shown in Figure 2. 

 

(a) Cuprite1                  (b) Cuprite2 

Figure 2. Original image (the 40th band) 

As a primary measure of reconstruction quality, the peak signal-to-noise (PSNR) of the reconstructed 

image is calculated to evaluate the performance of different reconstruction algorithms. The PSNR 

measured in dB is defined as, 

( )
( )
( )xx

x
xx

ˆ,MSE

max
log20ˆ,PSNR 10=                           (14) 

where x  and x̂  are the original and reconstructed image, ( )xmax  is the peak value of x , ( )xx ˆ,MSE  

is the mean squared error,  

( ) 2

2
ˆ

1
ˆ,MSE xxxx −=

N
                              (15) 

Figure 3 depicts the performance of 2DCS-SP compared with 2DCS without residual reconstruction. 

PSNR is averaged over all bands of two hyperspectral data. As expected, the residual reconstruction 

method with prediction from reconstruction of the key bands results in a significant performance 
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improvement for 2DCS-SP. In these graphs, the proposed method shows a great advantage even at 

lower sampling rates. The PSNR of method 2DCS-SP is up to 6dB higher than 2DCS at sampling 

rate 5.0=SR . The reconstructed images with different methods at sampling rate 05.0=SR  are 

given in Figure 5. In the figure, the reconstructed images using the proposed 2DCS-SP has the higher 

PSNR than that of 2DCS, and has less visual error compared to the original image. 

 

(a) Cuprite1                              (b) Cuprite2 

Figure 3. Comparison of method 2DCS-SP and 2DCS under different sampling rates. 

 

(a)                        (b)                           (c)  

 

(d)                        (e)                           (f) 

Figure 4. Reconstructed images with different methods at sampling rate 0.05. First row: (a) original 

image, (b) 2DCS-SP, PSNR = 38.0099 dB, (c) 2DCS, PSNR = 36.1068 dB. Second row: (d) 

original image, (e) 2DCS-SP, PSNR = 33.9578 dB, (f) 2DCS, PSNR = 32.0302 dB. 

5. Conclusion 

Since spatial correlation and spectral correlation are existed in hyperspectral images simultaneously, 

it is significant to exploit spectral correlation to improve reconstruction quality. In this paper, a 

residual reconstruct algorithm focused on hyperspectral images driven by two dimensional 

compressed sampling algorithm and spectral prediction between key and non-key band is proposed. 

Extensive experiment results demonstrate that the proposed residual reconstruction could obtain 

higher PSNR over 2DCS that does not utilize the spectral prediction in the reconstruction process. 
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The results demonstrate that the proposed method 2DCS-SP also outperforms2DCS reconstruction in 

term of PSNR and visual quality. 
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