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Abstract 
From the point of view of the properties of argument principle, this paper uses the 
residue theorem and residue operation to get some important inferences of argument 
principle.First,C is a circumferential line, and function    zzf 、 satisfies the condition 

that  zf is meromorphic insideC .  z resolves on the closed field  CI and  zf  resolves 

onC without zeros. So,  zf  has different zeros and poles inside the perimeter ofC that 
satisfy an integral equation. Second, let C be a circumferential line, Ra , and   azf   
satisfy that it is meromorphic insideC . It resolves onC and has no zeros.So, there's an 
expression for a logarithmic residue of   azf  .By analyzing typical problems, this paper 
discusses the argument principle and corollary in the complex field, including the 
number of zeros and distribution of the polynomial (or rational function) in a given 
region. 
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1. Introduction 

In complex function theory, Cauchy integral theorem, Cauchy integral formula and residue theorem 
can be used to solve the perimeter integral. The uniqueness theorem examines the distribution of 
zeros of an analytic function in a given region. However, it is usually difficult to determine the number 
of zeros.  In complex domain, the argument principle can solve some perimeter integrals and 
determine the number and distribution of zeros of functions in a given region. In addition, it has a 
good application in the judgment of Nai's stability in automatic control theory. There is still room for 
extension of the theory of argument. This paper discusses the principle, corollary and application.   

2. Prepare Knowledge 

Definition 1. If function 
 
    zf

dz

d

zf

zf
ln

'

  , the integral 
 
 dzzf

zf

i C
'

2

1


 is said to be the 

logarithmic residue of  zf  with respect to perimeter C .   

Definition 2[1].  A single-valued analytic function that has no singularities of any kind on the z-
plane other than poles is called meromorphic.   

Lemma 1[1] (residue theorem). LetC be a perimeter and function  zf satisfy the following conditions. 

(1)  zf resolves onC . (2)  zf resolves insideC except for n isolated singularities kaaa ,...,, 21 , then 

there is    zfsidzzf
n

k
azC k


 


1

Re2 .   
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Lemma 2[1]. (1) Let a be the nth-order zero of function  zf , then A must be the first-order pole of 

function 
 
 zf

zf '

, and have 
 
  n
zf

zf
s
az











'

Re . (2) Let b be the m-order pole of function  zf , then b 

must be the first-order pole of function 
 
 zf

zf '

, and 
 
  m
zf

zf
s
bz











'

Re  is obtained.   

Lemma 3[1] (argument principle).  Let C be a circumferential line and function  zf satisfy the 

following conditions.  (1)  zf  is meromorphic in C ,  (2)  zf  resolves on C  and has no zero, 

then 
 
       

 2

arg
,,

2

1 ' zf
CfPCfNdz

zf

zf

i
C

C


 .  

Where,  CfN , and  CfP , respectively represent the number of zeros and poles of functionC inside 

the perimeter line  zf (an n-order zero is denoted as n zeros, and an m-order pole as m poles). 

 zfC arg  represents the sum of  zfarg  as z travels around C in the positive direction is an 

integer multiple of 2 . In particular, if the function  zf  resolves on C and the interior of C and 

has no zero on C , there is 
 
     

 2

arg
,

2

1 ' zf
CfNdz

zf

zf

i
C

C


 .   

Note: If the condition "  zf  resolves on perimeter C and has no zeros" is reduced to "  zf  
continues to the boundary of perimeter C  and has no zeros", the conclusion of the argument 
principle still holds.   

Lemma 4[2]. Let the polynomial   n
n

t
t zazazaazP  10  have no zeros on the 

imaginary axis. If z goes from   to   along the imaginary axis from top to bottom,  zP  goes 

k times around the origin, and has  
  kiyP

y
2arg 


 . So  zP  has 

2

2kn 
 zeros in 0Re z  on 

the left half plane.   

3. Corollary of Argument Principle 

Lemma '2 . (1) Let ka be the kn -order zero of function  zf ,  z resolved at point ka . So ka must 

be the first pole of    
 zf

zf
z

'

 , and have    
   kk
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k
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


'

Re . (2) If jb is set as the jm -order 

pole of function  zf , jb must be the first-order pole of function    
 zf

zf
z

'

 , and have 

   
   jj
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zf
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j
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


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




'

Re .   

Proof. (1)  Since ka  is the kn -order zero of function  zf , there is ka  in the neighborhood of 

point      zgazzf kn
k . Where  zg resolves in the neighborhood of point ka and   0kag . So, 

there are          zgazzgaznzf kk n
k

n
kk

'1'   . Since    
 zg
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z

'
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of point ka , ka  must be the first-order pole of    
 zf

zf
z

'

  and    
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Re . (2) 
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Since jb  is the jm  pole of function  zf , there is    
  jm

jbz

zh
zf


  in the centroid 

neighborhood of jb . Where  zh  resolves in the neighborhood of point jb  and   0jbh . So, 

there are    
       

 zh

zh
z
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m
z
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''





  . Since    
 zh
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z

'
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jb , jb  must be the first pole of    
 zf

zf
z

'

  and    
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zf
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j
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
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'

Re .  End of proof.   

Note . (1) when   0ka , function    
 zf

zf
z

'

  resolves at point ka ,    
  0Re
'









 zf

zf
zs

kaz
 .(2) 

Either   0jb  or   0jb ,    
   jj

bz
bm

zf

zf
zs
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
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'

Re . 

Theorem 1. Let C  be a perimeter and function    zzf 、  satisfy the following condition.  (1) 

 zf  is meromorphic inside C ,  z  is resolved on closed field  CI , (2)  zf  is resolved on C

and has no zeros, so    
     


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'

2
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

. 

Where,  pkak ,...,2,1  means that function  zf  has different zeros and order kn inside the 

perimeter C .  qjb j ,...,2,1  indicates that function  zf has different poles and order jm inside 

perimeter C .    

Proof.  from lemma 1 and lemma, it can be obtained 
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'

ReRe
2

1 


, End of proof. 

Note. when   1z , it is lemma 3. 

Theorem 2. Let C be a perimeter, and for Ra , function   azf  satisfies the following condition. 

(1)   azf   is meromorphic inside C , (2)   azf   resolves on C  and has no zeros, then 

 
        

 2

arg
,,

2

1 ' azf
CafPCafNdz

azf

zf

i
C

C







. 

Proof. From the condition, the function   azf  has at most a finite number of zeros and poles inside 

C . For Ra , function   azf   also satisfies the argument principle. End of proof. 

In particular, if the function   azf   resolves on C and the interior of C and has no zero on C , 

there is 
 

      
 2

arg
,

2

1 ' azf
CafNdz

azf

zf

i
C

C







.   

Theorem 3[3].  Let C be a perimeter and function    zzf 、 satisfy the following conditions. (1) 

   zzf 、 is meromorphic in C , (2)    zzf 、 resolves on C and has no zeros, and (3) 

   
  








 Cz
zf

z
zL

 satisfies the undivided 0 and   points in C , then 

       CPCNCfPCfN ,,,,   .   

Theorem 4[4] (Rouché theorem).  Let C be a circumferential line and functions  zf  and  z  
satisfy the following conditions. (1) They are all resolved inside C and continue to C ; (2) On C , 
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   zzf  , then functions  zf  and    zzf   have the same number of zeros inside C , that 

is,    CfNCfN ,,  .   

4. Application of Argument Principle   

4.1 Calculate Some Perimeter Integrals  

In the complex domain, compute the perimeter integral.  We need to consider the analyticity of the 
integrand and whether there are singularities in the peripheral region.  Then, the Cauchy integral 
theory is used to solve the problem.  In addition, the argument principle is also efficient in solving 
the perimeter integral.   

Proposition 1. Evaluate the integral   1 2 2

1
z

dz
zz

. 

Solution. Original formula =    1 2

1
z

dz
zz

, For  1

1
z

dz
z

,   1 2

1
z

dz
z

, since   zzf  , 

  2 zzg resolves both inC , and on C,   0zf ,   0zg has a zero inC and no poles.  zg has 

neither zero nor pole inC , so Original formula =    iidz
z

dz
z zz

 








 

0012
2

1

2

11

2

1
11

. 

This is consistent with the result of Cauchy integral theorem. 

4.2 Determine the Number and Distribution of Zeros of Functions in the Specified Area 

In some practical problems, it is necessary to know the number of zeros and distribution of certain 
functions (mainly polynomial or rational functions) in a given region. The argument principle 
established in residue theory can solve this kind of problem easily.   

Proposition 2.  If function  zf resolves onC except for a first-order pole inside the perimeterC , and 

resolves on C  and   1zf , then function   azf   1,  aRa  has exactly one root inC .   

Proof.  since   azf  satisfies theorem 2, then       
2

arg
,,

azf
CafPCafN C 




.  As z 

goes around C ,  zf  goes around the circle  :   1 zf . a  1,  aRa  is on the 

outside of  ,   azf   doesn't go around 0 ,    0arg  azfC , that is, 

    0,,  CafPCafN . And since  zf  has a meromorphic function with only one pole inside 

perimeter C , resolved on C  and   01zf , which satisfies the argument principle, has 

      1,,,  CfPCafPCafN , that is, function  1,  aRa has exactly one root inC .   

Proposition 3.  LetC be a circumferential line, function  zf is meromorphic inC and continues to 

C , (1) If Cz ,   1zf , it gets    CfPCfN ,,1  ; (2) If Cz ,   1zf , it gets 

   CfNCfN ,,1  .   

Proof.  zf  satisfies the argument principle condition and has      
2

arg
,,

zf
CfPCfN C .  

So   1zf satisfies theorem 2,       
2

1arg
,1,1




zf
CfPCfN C .Therefore,  (1) If Cz ,

  1zf . Because when Z goes aroundC in the direction ofC ,  zf turns the circle C in the z 

plane into a closed curve in the plane, and 1 is outside , that is,   1zf does not go around 
0 . If there is    01arg zfC , there is      CfPCfPCfN ,,1,1  . End of proof. (2) 
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Because      








zf
zfzf

1
11 ,       








zf
zfzf CCC

1
1argarg1arg  . Let 

 zf

1
1 , because  zf

1
1  turns the circle C in the z plane into a closed curve  in the 

  plane as z goes around C  in the forward direction. Since   1zf , is contained inside the 

circle 11  , and   does not go around the origin 0 ,   0
1

1argarg 









zfCC   , 

    zfzf CC arg1arg   . So        CfPCfNCfPCfN ,,,1,1  , 

   CfPCfP ,,1  , then    CfNCfN ,,1  .  End of proof.   

Proposition 4.  Find how many roots does the polynomial   36 257  zzzzP have in 1z . 

Solution. take   56zzf  ，   3z 27  zz , on 1z ,   66 5  zzf ,

  1327  zzz , that    zzf   satisfied the condition of Rouché theorem,    zzf   and 

 zf have the same number of roots at 1z , i.e.     61,61,36 5257  zzNzzzzN .  

Thus, the polynomial   36 257  zzzzP  has six roots in 1z .   

Proposition 5.  Test. The polynomial   125  zzzP  has three zeros in the left half plane. 

Analysis.  According to lemma 4, we only need to prove that the following two points are true.  (1) 

 zP  has no zero on the imaginary axis;  (2)  
  


zP

y
arg .  

Proof. (1) on the imaginary axis: iyz  ，   y  has         5225 11 iyyiyiyiyP  . 

So when 1y ,   01Re 2  yiyP .   0Im 5  yiyP , so  zP has no zero on the imaginary 
axis. (2) When point z moves from point to point along the virtual axis from bottom to top, the 

trajectory of      yivyuiyP  is a curve, and the equation is 
 
 

 







y
yyv

yyu
，

5

21
, 

(see figure 1.) When y goes from 1 , we can see from  yv that  yv goes from 1 . The 

expression for  yu shows that  yu goes from 0 . This point is in the bottom left plane and call 

it 1l . When y goes from 01 , we can see from  yv that  yv goes from 01 . The expression 

for  yu tells us that  yu goes from 10 . This point is in the bottom right plane and call it 2l . When 

y goes from 10 , we can see from  yv  that  yv goes from 10 .The expression  yu for  yu can 

be seen from 01 .  This point is in the upper right plane and call it 3l . When y equals 1 ,

 yv equals  yv from 1 . The expression for  yu shows that  yu goes from 0 . This 

point is in the upper left plane and call it 4l .  

 

 

Figure 1. Trend diagram of point z  
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As can be seen from the attached figure, when y goes from  ,  iyP rotates
2

1
times 

counterclockwise around the origin. According to lemma
 

   
 2

1
2arg iyP

y

 ,  zP has three 

zeros in the left half plane 0Re z . End of proof.   
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