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Abstract 
Cassava brown steak diseases (CBSD) has caused serious reduction to the cassava 
productivity in Africa and is hard to detect it at the early stage of infection. Exist 
approaches requires large number of samples or complex experiment process, which 
cannot be implement in practice. This dissertation proposed a model that can detect 
infected plants at an early stage based on dual information fusion. Two main steps 
applied in this model is feature extraction and spatial optimization. For feature 
extraction, kernel principal component analysis (KPCA) is used to extract crucial 
information and transform original data to linear separable data, the data is then 
classified by support vector machines (SVM) to obtain a probability map. For spatial 
optimization, extended random walker is applied to generate another probability map. 
Then, the probability map created through feature extraction and spatial optimization 
are combined following a decision fusion algorithm. The model was applied on three 
groups of plants from three different trials, the result shows that this model has the 
potential to classify infected plants, but more trials are required to evaluate the 
reliability of this model in practice environment. 
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1. Introduction 

1.1 Background and Motivation 

With the growth of the world's population, the demand for agricultural products has been increasing. 
Amid the COVID-19 pandemic, government quarantine policies have affected the production of 
agricultural products, and the spread of plant viruses has aggravated the food crisis. In the past, the 
main method of crop pest control was to spread pesticides evenly over different tillage process. 
However, the virus was initially existed in limited areas, and this approach resulted in unnecessary 
increase of cost and pesticide residues. PCR is a common method for plant virus control, but it 
requires equipment and time, and it often cannot reliably detect viruses in the early stages of infection. 
Therefore, a low-cost method is needed to detect virus-infected plants at an early stage. 

With the development of imaging sensors, hyperspectral images can be obtained to extract the 
characteristics of objects in different spectra. These characteristics are useful for object classification. 
Some common classifier includes multinomial logistic regression (MLR), support vector machine 
(SVM) and random forest. Fusion of dual spatial information for hyperspectral image was 
successfully implemented for Indian Pine dataset. The reflectance of plant leaves under different 
spectra can be used to calculate vegetation indices and predict plant stress. Therefore, it is feasible to 
use computer to identify the hyperspectral images of leaves and detect the virus in the early stage of 
infection. 
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1.2 Aims and Objectives 

This dissertation aims to implement early detection of plant virus infection using fusion of dual spatial 
information for hyperspectral image. Detailed objectives are shown below: 

1) Selection of appropriate dataset: Choose a set of multi-spectral image of plant for the experiment. 

2) Dataset sampling: Do sampling to the dataset by crop the image into several patches with same 
size and random location. By sampling, the scale of data can be increased without further experiment. 

3) Patch based vegetation indices calculation: Calculate the average reflectance for each patch and 
use reflectance in different spectral to obtain vegetation indices. 

4) Spatial feature extraction: Find the correspondence of neighbor pixels and extract the spatial 
features to form a structural profile (SP). SVM should then be applied to obtain the class probability. 

5) Spatial probability optimization: First obtain the initial class probability by directly apply SVM to 
original image. Extended random walker (ERW) should then be adopted to this initial probability to 
optimize it. 

6) Decision fusion: Merge the class probabilities to obtain a final label. 

7) Evaluation: Obtain the classification accuracy by calculating the ratio of correct classified leaves 
and total number of samples. 

2. Literature Review 

Cassava Brown Steak Disease (CBSD) is widespread in Africa, causing serious reduction in local 
food production. This disease is caused by cassava brown steak virus (CBSV), which is mainly 
transmitted by whiteflies [1][2]. Molecular Techniques are a common method for the detection of 
plant viruses and can obtain accurate results. According to Lopez, molecular techniques can detect 
bacteria from 10 to 10^6 colony forming units/mL [3]. The limitations of the molecular techniques 
are that they cannot detect cassava brown steak disease in an early stage, for they have strict 
requirement to sample quality and are time-consuming [4]. Therefore, spectroscopic and imaging 
techniques were raised to provide accurate and timely result to avoid the spreading of CBSD. 

Spectroscopic and imaging techniques have potential in plant disease detection. In 1965, Gates et al. 
did research on the reflectance of various plants in different spectra [5]. Later, S. Jacquemoud 
proposed a model for understanding high spectral resolution data. Anatoly A. Guelson obtained the 
chlorophyll content of plants through reflectance. Thus, the physiological status of plants can be 
indirectly predicted by analysing its hyperspectral data [6] [7]. Classification based on hyperspectral 
data has better performance compared to traditional RGB colour model image, for it contains extra 
spectral information that cannot be directly obtained by human vision. According to Prasad, not all 
the spectrums have close relationship with the biophysical characteristics of crops. Based on their 
experimental results, 12 specific narrow bands ranging from 350nm to 1050nm were recommended 
to provide optimal crop information [8]. It is also suggested that the sharp change in reflectance 
between 680 nm and 750nm is especially suitable for early plant stress detection [9]. The ratio of 
reflectance under different spectra can also reflect the stress of plants. Carter calculated the correlation 
between the ratio and plant stress, and indicated that compared with a single spectrum, the ratio of 
reflectance under 695nm and 420nm or 760nm have better performance in indicating the change of 
plant stress. These ratios were named vegetation indices and were later successfully applied in the 
detection of pests and diseases in agriculture [10]. However, the symptom of CBSD cannot be 
detected directly from the image of different spectral, and it is hard to combine the information of all 
spectrums. For some machine learning algorithms are suitable in processing multi-dimensional data, 
they were applied in the classification of images with multiple spectra. 

With the development of computer vision and deep learning, Hyperspectral images (HSIs) were used 
in classify related tasks in geology and agriculture [11]. Support vector machines (SVMs) is a widely 
used classifier, its performance was evaluated by Melgani, the result shows that binary SVMs is 
effective in the classification of hyperspectral dataset compared to pattern recognition approaches 
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[12]. By combining multinomial logistic regression (MLP) and subspace projection, images with 
noise and mixed pixels can be classified with high accuracy [13]. Random forest (RF) is an approach 
based on decision trees, which can provide results within acceptable processing time. The problem 
with these methods is that they are sensitive to the total number of samples. These methods often do 
not perform well when the number of samples available for training is limited. Due to the large 
number of samples required, this kind of methods are also computationallyexpensive, which is a time-
consuming work for poor performance processors. Another problem is “Hughes” phenomenon, this 
refers to the fact that when the dimensionality of the dataset is high, the accuracy may decrease [14]. 

To solve the problems that are elaborated above, other classification methods were proposed. The 
first method is morphological profile (MP), it applies a set of morphological operations such as 
opening and closing to the original image with different size of structuring elements [15]. The resulted 
profile contains a large set of features, but these features may be mixed with redundant information. 
Therefore, an extended morphological profile (EMP) was applied to distinguish important features 
from redundancy in [16]. The extended method adds feature extraction as an additional step compared 
with the original one. Applying both method to an urban hyperspectral dataset, the result shows that 
with principal component analysis (PCA) as the approach for feature extraction, the classification 
accuracy of EMP is higher than MP. Kernel principal component analysis (KPCA) is one kind of 
nonlinear PCA, it has an advantage in processing data with multiple dimensions [14], therefore KPCA 
is used in this paper for feature extraction. The detail is discussed in the methods section. In addition 
to feature extraction, image segmentation is also a typical method for solving the problem 
aforementioned. In [17], the extended random walker (ERW) algorithm is used for the classification 
of hyperspectral images. As this algorithm should be applied based on an existed probability map, 
another classification should be implemented before to generate an initial probability for the belonged 
class of each pixel. In this paper, SVM is used to complete the preliminary classification. By applying 
ERW to the result of SVM, the spectral information between different spectrums, the spatial 
relationship of neighbouring pixels and the difference between samples can be combined. With this 
addition information, the result can be optimized compared to the experiment with only SVM applied, 
therefore an acceptable accuracy can be obtained with relatively small number of training samples 
[17]. Detail of ERW is given in the methods section. 

For feature extraction with support vector machine is effective in the recognition of large-scale object, 
and extended random walker is suitable for the modelling of small-scale object, merging the results 
of these two algorithms can produce better classification performance [18]. In the study of this 
dissertation, the datasets used for training and testing were obtained by an active multispectral 
imaging (A-MSI) sensor system [19]. Two probability maps should be calculated by different 
approaches in this dissertation. For the first approach, feature extraction based on kernel principal 
component analysis is applied to the obtained hyperspectral image as a preliminary processing. In the 
classification of plant diseases, patch-based voting method shows a better performance compared to 
whole leaf [19]. In order to implement patch-based voting, the resulted hyperspectral image of all 
leaves should be cropped into a set of patches that does not contain the leaf vein. These patches are 
labelled and fed to SVM for classification to generate the first probability map. For the second 
approach, original hyperspectral image should be classified by SVM directly and generate an initial 
probability map. Then, this map should be optimized with ERW to obtain the refined class probability. 
With class probabilities calculated by two approaches, a weighted decision fusion rule is applied to 
merge these two results to obtain the final result. 

3. Methods 

The general flowchart of the process implemented in this dissertation is shown in Fig. 1. In the 
beginning, the initial hyperspectral image that was obtained by A-MSI system is processed by two 
approaches separately. For first approach, key step is feature extraction implemented based on kernel 
principal component analysis. For second approach, key step is probability map optimization based 
on extended random walker. Detail of each step is discussed below. 
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Figure 1. Flowchart of the proposed classification framework 

3.1 Data Set 

The dataset used in this experiment was generated by A-MSI, the dataset contains three trials. The 
leaves in each trial were processed by different operations to generate three treatment groups. The 
first group was inoculated by Uganda cassava brown steak virus (UCBSV) and is regarded as the 
infected group. The second group was not inoculated and raised in controlled environment to ensure 
they are not infected. However, in first group UCBSV may not be the only factor that affect the plant 
stress, the operation of inject can also have influence on the plant. To ensure the change of reflectance 
is caused by the virus, not the injection, it is necessary to set the third group. In the third group, each 
leaf was inoculated with an empty control E. coli plasmid that does not have substantial effect on the 
leaves, so the inject operation is the only parameter that affect the plant stress. These three groups of 
plants are then observed at specific day post inoculation (dpi). For each trial, the observation day is 
different. A-MSI system was applied in the observation to obtain reflectance of 15 wavebands, it used 
isotropic illumination and a combination of an integrating hemisphere to achieve a minimized 
specular reflectance [20]. The observation time for each trial is shown in table. 1, and the wavebands 
observed in this experiment is presented in table .2. 

 

Table 1. Three Scheme comparing 

Trial Groups No. of plant Observation dpi 

1 

Infected 12 

7, 28, 53, 88 Mock 12 

Uninfected 24 

2 

Infected 18 

14, 28, 54 Mock 18 

Uninfected 18 

3 

Infected 18 

7, 14, 28, 52 Mock 18 

Uninfected 18 
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Table 2. Three Scheme comparing 

Band no. Centre band of wavelength 

8 395 nm 

9 415 nm 

10 470 nm 

11 528 nm 

12 532 nm 

13 550 nm 

14 570 nm 

0 585 nm 

1 590 nm 

2 610 nm 

3 625 nm 

4 640 nm 

5 660 nm 

6 700 nm 

7 880 nm 

3.2 Patch Cropping 

Before the image processing of two branches, the original images of leaves are cropped into small 
patches. This step has two purposes, first is to enlarge the samples in dataset, so a larger number of 
samples can be used in the training of SVM to improve the performance of classifier. Second purpose 
is to specify the region of interest, as for each leaf, the reflectance of main leaf veins should avoid 
being taken into consideration since they do not tend to change significantly with the groups of plant. 
The location of the cropped patches is randomly selected. Depends on the size of the leaf image, the 
patch size in pixels varies from 16×16 to 48×48. An example 40×40 patch and its detail are shown in 
fig. 2. For each leaf, the number of cropped patches should be odd to ensure that there will not be 
equal vote for both groups in the voting step. In this experiment, 7 patches were cropped from each 
leaf. 

 

 
Figure 2. Flowchart of the proposed classification framework 
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3.3 Spatial Feature Extraction 

Spatial feature extraction by KPCA is applied in the first branch of data processing. PCA can be used 
in linear dimensionality reduction, and kernel PCA can implement non-linear dimensionality 
reduction to dataset. Therefore, KPCA is applied to the linearly inseparable data in this experiment. 
The basic of KPCA is, for a matrix X in the input space, a nonlinear mapping is used to map all 
samples in X to a higher dimensional space called feature space. In feature space, these samples can 
be linearly separable, and dimensionality reduction by PCA can be applied in this space. Consider a 
two-dimensional data, a mapping operation 𝜙 can be used to map it to three-dimensional space as 
shown below: 

 

𝜙([𝑥ଵ, 𝑥ଶ]்) = ൣ𝑥ଵ
ଶ, 𝑥ଶ

ଶ, √2𝑥ଵ𝑥ଶ൧
்

(1) 

 

Where 𝑥ଵ, 𝑥ଶ  are the coordinates of data in two-dimensional space, 𝑥ଵ
ଶ, 𝑥ଶ

ଶ, √2𝑥ଵ𝑥ଶ  are 
corresponded three-dimensional coordinates after mapping. This mapping procedure can be presented 
as: 

 

𝜙(𝑥): 𝑅௄ → 𝑅஽ , 𝐷 > 𝐾 (2) 

 

Where K is the dimension of original space, D is the dimension of space after mapping. Assume 
original space is X, feature space after mapping is F: 

 

𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ே] (3) 

 

𝐹 = 𝜙(𝑋) (4) 

 

Where N is the number of samples in X. Dimensionality reduction can then be applied to the feature 
space F. 

To apply kernel principal component analysis, four parameters need to be determined in advance. 
First parameter is the number of training samples 𝑁௦, it influences the required training time and 
accuracy. This number should be smaller than the quantity of total pixels in the input image, which 
in this case is within a range of 576 – 1764. Consider the memory of processor used in the experiment, 
100 samples are selected for training. Second parameter is the number of dimensions required to be 
extracted, in this experiment is equal to the number of bands of hyperspectral image. Third parameter 
is related to the form of applied kernel function, in this experiment, Gaussian kernel function is used 
for it is suitable in transforming linearly inseparable data to linearly separable data. In the training 
step of KPCA, the scale parameter 𝜎 can be calculated by: 

 

𝜎 =
∑ ඥ𝑑௜

ேೞ
మ 

௜ୀଵ

𝑁௦
ଶ

(5) 

 

Where 𝑑 is the squared distances between training samples. Then, the kernel 𝑘 for training data 
can be calculated by: 

 

𝑘௜ = exp (−
𝑑௜

2𝜎ଶ
) (6) 
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The number of kernels equals to the square of training samples. Kernel matrix is centred in order to 
calculate the eigenvector. Then, the complete image is also kernelized and centred, by multiplying 
the resulted matrix with the eigenvector calculated by training samples, the kernel principal 
components can be obtained. These principal components are the first probability map of the image. 

3.4 Probability Optimization with ERW 

Then, probability optimization with ERW is applied to generate the second probability map. Before 
the optimization, SVM classifier is applied directly on the initial image to obtain a preliminary map. 
Then, ERW is applied to the map in the second branch of the experiment to implement optimization. 
It first transforms the original image into a weighted graph 𝐺 = (𝑉, 𝐸). Where V is a set of pixels 
and E is a set of links that connect adjacent pixels. Then, a 8-connected lattice is build, each edge of 
the lattice has a weight denoted by 𝜔௜௝. The weight can be calculated by: 

 

𝜔௜௝ = exp ቀ−𝛽൫𝑔௜ − 𝑔௝൯
ଶ

ቁ (7) 

 

Where 𝑔௜ and 𝑔௝ are the intensity of pixel at point 𝑖 and 𝑗. 𝛽 is a free parameter, which in this 
experiment is determined as 710. The calculated weights show the intensity difference between pixel 
𝑖 and 𝑗, it should be normalized to obtain better performance. Solving random walker probabilities 
is same as solving combinatorial Dirichlet problem. The Dirichlet integral can be defined as: 

 

𝐷[𝑢] =
1

2
න |∇u|ଶ𝑑Ω

ஐ

(8) 

 

Where 𝑢 is the field and Ω is the region of this problem, and the harmonic function which satisfies 
∇ଶ𝑢 = 0 should be found should be found to minimize the Dirichlet integral. As Laplace equation is 
the Euler-Lagrange equation for the Dirichlet integral, a combinational Laplacian matrix is defined 
as: 

 

𝐿௜௝ ቐ

∑𝜔௜௝                                                                   𝑖𝑓 𝑖 = 𝑗

−𝜔௜௝                     𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑖𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠

0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9) 

 

Then, the optimized probability can be obtained by solving the energy function shown below: 

 
𝐸௡(𝑝௡) = 𝐸௦௣௔௧௜௔௟

௡ (𝑝௡) + 𝛾𝐸௔௦௣௔௧௜௔௟
௡ (𝑝௡) (10) 

 

Where 𝛾 is a free parameter defined as 0.1ହ , and 𝐸௦௣௔௧௜௔௟
௡ (𝑝௡) is an energy function of spatial 

terms represented by: 

 

𝐸௦௣௔௧௜௔௟
௡ (𝑝௡) = 𝑝௡

்𝐿𝑝௡ (11) 

 

Where n is the label of class, by minimizing this function, the probability of random walker starting 
from pixel 𝑖  to labeled pixel 𝑛  can be calculated. Similarly, 𝐸௔௦௣௔௧௜௔௟

௡ (𝑝௡)  is another energy 
function for aspatial term, represented by: 
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𝐸௔௦௣௔௧௜௔௟
௡ (𝑝௡) = ෍ 𝑝௤

்Λ௤𝑝௤ + (𝑝௡ − 1)்Λ௡(𝑝௡ − 1)

ே

௤ୀଵ,௤ஷ௡

(12) 

 

Where Λ௧ is a diagonal matrix. The optimized probability can be obtained by choosing the maximum 
value of 𝑝௡, and generate the second probability map.  

3.5 Decision Fusion 

After the probability map of two branches are obtained, these two results can be merged through 
weighted decision fusion to improve the accuracy. Assume 𝑃ଵ

௜ is the probability that a pixel belongs 
to class 𝑖 generated by the first branch, 𝑃ଶ

௜ is the probability generated by the second branch. A free 
parameter 𝜇 is multiplied as the weight. The final classification result 𝑃 can then be calculated by: 

 

𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥൛𝜇𝑃ଵ
௜ + ൫1 − 𝜇𝑃ଶ

௜൯ൟ

𝑖                          
(13) 

3.6 Patch-based Voting 

Patch based voting is to first apply classification to the patches cropped from each leaf, then determine 
the group of leaves based on the classified groups of their patches. According to the experiment 
presented by [19], classification with patch-based voting can provide higher accuracy compared with 
classification based on whole leaf in most cases.  

The patches of a leaf may be classified to different groups, in this experiment the group that majority 
patches belong to is regarded as the group for this leaf. As explained in section 2.2, 7 patches were 
cropped for each leaf, which means if the number of patches belong to a group is larger or equal to 4, 
their corresponded leaf can be determined belonging to this group. 

4. Results and Discussion 

4.1 Infected Versus Uninfected 

 
Figure 3. The classification accuracy (%) of infected versus uninfected leaf for three trials. (a) 

Classification accuracy of trial 1, sampled at 7,28, 53, 88 dpi. (b) Classification accuracy of trial 2, 
sampled at 14, 28, 54 dpi. (c) Classification accuracy of trial 3, sampled at 14, 28, 52 dpi. 
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In the experiment, the model was first applied in the classification of infected and uninfected plants. 
Each plant was cropped into 7 patches and labelled manually, if one leaf belongs to the infected group, 
all patches cropped from it are labelled as “infected”. Then, these patches are separated to test set and 
training set. For each trial, half of the data were used for training the model and the rest were used 
for testing. All patches in the testing set were labelled again by the classifier, by comparing the label 
given by classifier to the label given manually, the patch classification accuracy can be calculated by 
dividing the number of successfully matched labels to the overall number of patches. Patch-based 
voting was also applied to obtain the label for each leaf, and the patch-based voting classification 
accuracy was calculated similarly. The corresponded accuracy for each trial and dpi is shown in fig.3. 

The classification accuracy for trial 1 is shown in fig. 3 (a). At 7 dpi, patch-based voting classification 
accuracy is 61%. Then, the accuracy dropped to below 50% at 28 dpi and rise to 97% at 53 dpi. From 
53 dpi to 88 dpi, the accuracy has a small decrease from 97% to 93%.  

In theory, the classification accuracy should rise with the increase of dpi, but there are two notable 
point in fig. 3 (a), which are the accuracy at 28 dpi and 88 dpi. At this two dpi, the classification 
accuracy was decreased compared to their previous dpi, and there are two possible explanations for 
this result. First explanation is that the accuracy was affected by the location of cropped patches, 
though for patch-based voting classification, the accuracy seems dropped significantly at 28 dpi and 
88 dpi, the accuracy only dropped 5% for patch classification. In this scale, the selection of patches 
may cause some error, as at 28 dpi, it is possible that not all patches show symptoms of infected, for 
the sign of infection can only appear in particular area of the plants at early stage.  As the testing set 
of trial 1 contains 210 patches, the number of mis detected patches was around 10, which can be 
regarded as a reasonable error caused by the selection of patches. For 88 dpi, the classification 
accuracy was in fact increased compared to previous dpi, but the accuracy was reduced by the voting 
step. Second explanation is that the symptom of infection may reduce slightly with the increase of 
dpi. As it is presented in [19], the symptom caused by CBSV at 73 dpi is more obvious than 81 dpi. 
This remission of diseases may be caused by the weather condition, though it is temporary, and the 
symptom worsening is inevitable on a long-term basis, it may reduce the classification accuracy at 
particular dpi. For trial 2 shown in fig. 3 (b), the classification accuracy of patch-based voting for 
different dpi increases smoothly from 53% at 14 dpi to 68% at 28 dpi, and at 54 dpi it has the highest 
accuracy of 91%. For trial 3 shown in fig. 3 (c), the classification accuracy of patch-based voting was 
91% at 14 dpi, then it increased slightly to 97% at 28 dpi. However, the accuracy dropped significantly 
to 70% at 52 dpi. The possible explanation of this problem is similar to the situation in trial 1, but in 
this case the accuracy dropped nearly 20% and indicates that the number of misclassified patches has 
an increase of 40, which is not acceptable, so the decrease of infection symptom is a more convincing 
explanation to the problem occurred in trial 3. 

4.2 Infected Versus Mock 

As for infected plants, both CBSV and the operations for inoculating the virus could have effect on 
the plant, it is necessary to ensure that the classification accuracy is mostly affected by the virus. 
Therefore, the model was also applied on the sample sets of mock versus infected. In this experiment, 
mock is a group of plants that were treated the same way as the infected group, except that mock 
groups were inoculated with ‘empty’ control E. coli plasmid instead of CBSV. Therefore, by applying 
classifier on mock and infected group, it can be measured that how much did the virus affected the 
classification. In theory, if the classification is mostly based on the virus but not the inoculation 
operation, the infected group and mock group should not be difficult to classify and can have a 
classification accuracy close to infected versus uninfected as measured in the previous section. The 
practical classification accuracy of infected versus mock is shown below: 
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Figure 4. The classification accuracy (%) of infected versus mock leaf for three trials. (a) 

Classification accuracy of trial 1, sampled at 7,28, 53, 88 dpi. (b) Classification accuracy of trial 2, 
sampled at 14, 28, 54 dpi. (c) Classification accuracy of trial 3, sampled at 14, 28, 52 dpi. 

 

Fig. 4 (a) shows the classification accuracy of infected versus mock. At 7 dpi, the accuracy is 27.8%, 
which is extremely low. With the increase of dpi, the accuracy first increases to 55.6% at 28 dpi, and 
then rises to 61.1% and 77.8% at 53 and 88 dpi respectively. To explain the low classification 
accuracy at 7 dpi, a mesh surface of the reflectance after KPCA is plotted as shown below: 

 

 
Figure 5. Mesh surface of reflectance after KPCA for trial 1 at 7dpi, red represents the reflectance 

of infected group, blue represents the mock group. 

 

As it is shown in fig. 5, after KPCA, the reflectance value of each band varies between different 
patches. It can be seen that for the first half sets, infected patches tend to have a higher reflectance 
compared with mock patches, but for the second half sets, mock patches are more likely to have 
higher reflectance than infected patches. As half of the patches are used as the training set and the 
other half are testing set, it is possible that the trained model tends to recognise patches with higher 
reflectance in band 1 to be infected, which does not match the situation in the testing set and may 
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cause low classification accuracy. For the selection of training and testing set is fixed in this 
experiment, this problem can be attributed to the limited size of sample sets and is possible to be 
solved by reallocate the training set or increase the size of samples. For trial 2 shown in fig. 4 (b), 
classification accuracy at 14 dpi and 28 dpi are 56.7% and 36.7%. Then the accuracy increases to 
73.3% at 54 dpi. The low accuracy at 28 dpi could be attribute to the similar reason in trial 1 7 dpi. 
For trial 3 shown in fig. 4 (c), classification accuracy was measured as 70% and 66.7% at 14 dpi and 
28 dpi. It has a high accuracy at 52 dpi of 90%. The classification results shows that when dpi is low, 
it is difficult for the model to distinguish two groups, which indicates that the reflectance difference 
between infected group and mock group is not significant. Then, as dpi increases, there is higher 
possibility for the model to classify correctly between infected and mock patches. Therefore, it can 
be concluded that at the early stage of infection, CBSV does not has significant influence on the plant 
stress for trial 1 and trial 2. Only when dpi exceeded 50 did the virus caused distinct effect on the 
plants. 

4.3 Uninfected Versus Mock 

In the experiment, it is also necessary to quantify how much did the inoculation operation affected 
the plant. Therefore, the model was applied to classify uninfected group and mock group. In theory, 
if the injection does not have impact on the plants, the classification accuracy between mock and 
uninfected groups should be around 50%, which is close to random guessing. The practical result 
generated by the model is shown below: 

 

 
Figure 6. The classification accuracy (%) of uninfected versus mock leaf for three trials. (a) 

Classification accuracy of trial 1, sampled at 7,28, 53, 88 dpi. (b) Classification accuracy of trial 2, 
sampled at 14, 28, 54 dpi. (c) Classification accuracy of trial 3, sampled at 14, 28, 52 dpi. 

 

Fig. 6 (a) shows that for trial 1, the accuracy varies between 40% to 60%, which is 50% ± 10%. It 
should also be noticed that for trial 1, the correlation between accuracy and dpi is low, which indicates 
that virus does not involve in the classification, as the effect of virus changes with time. For trial 2 
shown in fig. 6 (b), classification accuracy is 50% at 14 dpi, but it then rises to 72.4% at 28 dpi and 
83.3 at 54 dpi, which does not match the theoretical situation. As the accuracy changes significantly 
with the increase of dpi, the factor that caused this problem may not be the inoculation operation, for 
the accuracy is reasonable at the beginning. One possible explanation is that the environment of trial 
3 was not perfectly controlled, the mock group may be infected or was influenced by other factors in 
the growing period which causes the difference between mock and uninfected group. For trial 3 shown 
in fig. 6 (c), the classification accuracy is fluctuated around 60%, and it does not change with dpi. 
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Therefore, it can be estimated that the inoculation operation affected the mock group in trial 3, which 
caused slight difference between mock and uninfected plants.  

Based on the three different experiments elaborated above, the result can be further discussed by 
taking all the results into consideration. As the classification accuracy of trial 1 in mock versus 
uninfected is around 50%, its accuracy measured for infected versus uninfected is more reliable 
compared with other 2 trials. According to the result of trial 1, the proposed model is not able to 
provide reliable classification at an early stage, but the accuracy can increase significantly with dpi. 
However, the symptoms of infected plants for different trial may also varies and influence the 
accuracy. As it is shown in fig. 4, the accuracy for trial 3 is much higher than trial 2, this may indicate 
that the symptoms appeared on the plants of trial 3 is more serious than trial 2 and could explain the 
high classification accuracy of trial 3 in fig. 3 (c). The impact of inoculation operation on each trial 
also varies. According to fig. 6, the operation caused more significant influence on trial 3, this may 
also contribute to the high classification accuracy in fig. 3 (c).  

5. Conclusions and Future Work 

5.1 Conclusions 

In conclusion, this dissertation proposed a model for the classification of CBSV based on 
hyperspectral image.  Firstly, a dataset obtained by A-MSI was selected to implement the 
experiment, it contains three trials, each trial has three groups and the total number of bands that can 
be detected is 15. Then, the images are sampled to enlarge the size of dataset by cropping leaves into 
patches. According to the result in [19], vegetation indices is abandoned in this experiment due to its 
poor performance, and patch-based voting method is applied instead. The sampled dataset is 
processed by two different algorithms. For the first algorithm, kernel principal component analysis is 
applied to the original dataset for the implementation of feature extraction, the crucial information is 
extracted and transformed to a linear separable set. The outcome of KPCA is classified by SVM to 
obtain the first probability map. For the second algorithm, SVM is directly applied to the initial dataset, 
and the outcome is further optimized by extended random walker to achieve another probability map. 
The probability map generated by these two algorithms is then fused to obtain the final result. The 
result shows that, this model can provide accurate classification when dpi exceeds 50. However, at 
early stage of infection, the classification accuracy varies between trials, which is not reliable. The 
result also shows that, patch-based voting can boost the accuracy in most cases. However, if the 
original accuracy is low, patch-based voting may weaken the performance of the model.  

5.2 Future Work 

In the future, the quality of cropped patches can be improved. The patches in this experiment are 
randomly selected and marked based on the group of corresponding leaves, which means some 
patches in the infected group may have no symptoms and mislead the model in the training process. 
Therefore, image processing algorithm can be applied to the initial dataset to assist the selection of 
patches. To avoid occasional case, it is possible to enlarge the size of samples or use random training 
set instead of a fixed set and take the average accuracy. In this experiment, the classification accuracy 
for three trials has significant difference, which indicated that the virus may cause different effect in 
different trials. Therefore, more trials are needed and tested to ensure that the result is reliable in all 
situations. As the result also shows that the effect of virus may not be the only factor involved in the 
classification, it is necessary to further improve the inoculation process to weaken the influence of 
factors other than the virus.   
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