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Abstract 

Under the framework of the binomial model towards option pricing, this work aims to 
find a way to price options in the trinomial model, with detailed procedures using Python. 
Based on the limitation of the trinomial model, investors can’t price an option perfectly 
by replicating portfolio. And this research constructs three different hedging strategies 
by adjusting the value of Ns (number of underlying assets). Monte-Carlo simulation was 
used in this report to compare the payoff errors and standard deviations between our 
strategies and the initial binomial model. The result shows all three methods produce 
similar tiny errors thus the authors think in the giving situation there’s no obvious 
difference between these three models. The previous researches were focusing on 
figuring out the delta value by creating non-arbitrage models, to find the neutral 
probability, in the trinomial tree; this research is trying to modify the Ns model 
according to the giving nature probability in the trinomial tree. 
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1. Introduction 

The Trinomial model is an option pricing model, modified from the Binomial model. In contrast 
to the Binomial model, an option in the Trinomial model cannot be priced by a replicating 
portfolio. This report aims to find a good strategy with only two primary assets, to calculate the 
replication error, and to analyze the result. The 'Delta hedge' from the title is to find the 
corresponding Ns (number of underlying assets) of the replicating portfolios at each short 
period.  

In some ideal situations, the initial wealth (X_0) of the replicating portfolio should be equal to 
the option value. This study is going to find the error by comparing the portfolio with the 
corresponding payoff of the option. In order to find the error, different hedging strategies (i.e., 
different Ns) and pricing methods were set to find X_0. And this work suggests and discusses 
three different strategies including constructing Ns from a binomial model, trying to include all 
three nodes of the trinomial model, and taking an average of Ns as well as the combined method. 
Using these three methods with the X_0 from an appropriately calibrated (see below) Binomial 
model, constructing and comparing the errors.  

In order to improve the overall error, a sophisticated calibration was used to determine the 
hedging strategy and the initial capital X_0. 'Calibrating' here means to choose u_B such that the 
variance in the Binomial model is the same as in the Trinomial model. Indeed if the variances 
are matched, option prices are more accurate. 

2. Setting the parameters 

T = 1000   # number of periods 
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import math 

u = math.exp(1.5/math.sqrt(T)) 

R = 1 

S0 = 1 

m = R 

d=m**2/u    

# We need to make sure u*d=m*m in order to ensure that the tree is recombining. 

3. Preparatory steps 

3.1. Import the packages that we need 

import numpy as np 

import pandas as pd 

import random 

import matplotlib.pyplot as plt 

import sympy as sp 

import seaborn as sns 

sns.set() 

3.2. Present the metrics into a dataframe with their names 

def variablename(name): 

return [tpl[0] for tpl in filter(lambda x: name is x[1], globals().items())] 

def print_matrix(x): 

    x_df = pd.DataFrame(x) 

    display(x_df, variablename(x))  

3.3. Implementation of the trinomial stock price tree 

stock = np.zeros([2*T + 1, T + 1])      

for t in range(T + 1):     # t represents the time periods 

for i in range(t + 1):    

        stock[-i-1-T,t] = S0 * (m ** (t - i)) * (u ** i)  

# compute the stock price that goes up 

        stock[i+T, t] = S0 * (m ** (t - i)) * (d ** i)   

# compute the stock price that goes down 

print_matrix(stock) 

 
Table 1. Stork price after 1000 short periods 
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3.4. Auxiliary: Binomial option pricer 

The following function prices the option in the trinomial model as if it were a Binomial model 
without the m node. 

def option_Binomial(payoff, p, u): 

price_Bin = np.zeros([2*T + 1, T + 1]) 

    price_Bin[:, T] = payoff 

    u_b = calibrate_ub(p, u) 

#using the variance from the Trinomial model to find suitable ub and db 

d_b = m**2/u_b 

    q = (R-d_b)/(u_b-d_b)[1] 

   # probability of going up in calibrated Binomial model 

    for t in range(T - 1, -1, -1): 

        for i in range(0, 2*t + 1): 

            price_Bin[i+(T-t), t] = ( 

                1 / R*(q*price_Bin[i+(T-t) - 1, t+ ] + (1-q) * price_Bin[i+(T-t) + 1, t+1]))[2] 

    return price_Bin 

3.5. To find the initial capital 

In order to find 𝑋0, the following function finds the u in the situation where binomial variance 
= trinomial variance. 

Here we assume, by using the variance from the Trinomial model, the Binomial method would 
provide a more accurate price.[3]  

def calibrate_ub(p, u): 

var = (p[0]/sum(p))*u**2 + (p[1]/sum(p))*m**2 + (p[2]/sum(p))*d**2 - ((p[0]/sum(p))*u + 
(p[1]/sum(p))*m + (p[2]/sum(p))*d)**2 #variance of trinomial model 

  x = sp.Symbol('x')   

    f = (R*x**2)/(x+1) + R/(x*(x+1)) - R**2 - var         #Var.Tri(u) = Var.Bin(x) 

    x = sp.solve(f) 

    ub = max(x)                            

    return ub 

Trinomial tree variance : 

𝑉𝑎𝑟(𝑌) = 𝐸[𝑌2] − (𝐸[𝑌])2 = 𝑝𝑢𝑢2 + 𝑝𝑚𝑚2 + 𝑝𝑑𝑑2 − (𝑝𝑢𝑢 + 𝑝𝑚𝑚 + 𝑝𝑑𝑑)2 

Binomial tree variance: 

𝑉𝑎𝑟(𝑌) = 𝐸[𝑌2] − (𝐸[𝑌])2 = 𝑞𝑢𝑢2 + (1 − 𝑞𝑢)𝑑2 − (𝑞𝑢𝑢 + (1 − 𝑞𝑢)𝑑)2 

=
𝑅 − 1/𝑢

𝑢 − 1/𝑢
𝑢2 +

𝑢 − 𝑅

𝑢 − 1/𝑢
1/𝑢2 − 𝑅2 =

𝑅𝑢2

𝑢 + 1
+

𝑅 𝑢⁄

𝑢 + 1
− 𝑅2 

3.6. Function to find the error via Monte-Carlo [4] 

def find_error(X0, ns, payoff, N_of_sims, p): 

     #randomly generate 1,0,-1 according to the probability we set above 

c = np.random.multinomial(1, p, [N_of_sims, T]) 

    aux = [1, 0, -1] 

    Y_raw = np.dot(c, aux) 

    Y = ((u-d)/2 * (Y_raw + 1) + d - m) * Y_raw**2 + m 

#turns 0 to m, -1 to d, and 1 to u 
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π = ns * stock                    #Now we have N random draws of the stock price                

    error_mc = np.zeros(N_of_sims) 

    stock_mc = np.zeros(N_of_sims) 

     

    for i in range(0, N_of_sims): 

        X = X0 

        idx = T                        #where we are currently on the grid 

        for t in range(0, T): 

            X = R*X + π[idx, t] * (Y[i, t] - R) # Self-financing[5,6] 

            idx -= int(Y_raw[i, t]) 

        stock_mc[i] = math.log(stock[idx, t]) 

        error_mc[i] = X - payoff[idx] 

#Compare X(Wealth) with corresponding payoff of the option 

 

    return [error_mc, stock_mc] 

𝑆𝑒𝑙𝑓 − 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑛𝑔: 𝑋𝑗 = 𝑁𝑗
𝐵𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗

𝑋𝑗+1 = 𝑁𝑗
𝐵𝐵𝑗+1 + 𝑁𝑗

𝑆𝑆𝑗+1

= 𝑁𝑗
𝐵𝑅𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗

𝑆𝑗+1

𝑆𝑗

= 𝑅(𝑁𝑗
𝐵𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗) + 𝑁𝑗
𝑆𝑆𝑗(

𝑆𝑗+1

𝑆𝑗
− 𝑅)

= 𝑅𝑋𝑗 + 𝜋𝑗(𝑌𝑗+1 − 𝑅)

 

3.7. Strategy to find Delta (ns) 

3.7.1. Strategy 1: 

construct Ns by forgetting about the middle branch using the Binomial strategy: 𝑁𝑠 =
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
 

def ns_binomial(payoff, p, u): 

o_price = option_Binomial(payoff, p, u) 

     

    ns = np.zeros([2*T + 1, T + 1]) 

     

    for t in range(T - 1, -1, -1): 

        for i in range(0, 2*t + 1): 

            Vu = o_price[i+(T-t)-1, t+1] 

             #option value when stock price goes up 

            Vd = o_price[i+(T-t)+1, t+1] 

            #option value when stock price goes down 

             

            Su = stock[i+(T-t)-1, t+1] 

            Sd = stock[i+(T-t)+1, t+1] 

             

            ns[i+(T-t), t] = (Vu-Vd)/(Su - Sd) 
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    return ns 

3.7.2. Strategy 2: 

construct Ns by taking the average of Ns , then we are able include all three notes to get Ns 

rather than only using u and d: 𝑁𝑠 = (
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
+

𝑉𝑢−𝑉𝑚

𝑆𝑢−𝑆𝑚
+

𝑉𝑚−𝑉𝑑

𝑆𝑚−𝑆𝑑
)/3 

def ns_average(payoff, p, u): 

o_price = option_Binomial(payoff, p, u) 

     

    ns = np.zeros([2*T + 1, T + 1]) 

     

    for t in range(T - 1, -1, -1): 

        for i in range(0, 2*t + 1): 

            Vu = o_price[i+(T-t)-1, t+1] 

            Vd = o_price[i+(T-t)+1, t+1] 

            Vm = o_price[i+(T-t),t+1]           #option value when stock price stays constant 

            Su = stock[i+(T-t)-1, t+1] 

            Sd = stock[i+(T-t)+1, t+1] 

            Sm = stock[i+(T-t),t+1] 

           

            ns[i+(T-t), t] = ((Vu-Vd)/(Su - Sd)+(Vu-Vm)/(Su-Sm)+(Vm-Vd)/(Sm-Sd))/3 

         

    return ns 

3.7.3. Strategy 3:  

In Trinomial model, it is not possible to exactly replicate the option with only one risky asset in 
some cases(nodes) when the payoff of option is not linear to the stock price. In this case, we use 
the average method to find ns. 

However, there are some cases when Su > Sm > Sd > Strike Price and the payoff of option is 
linear to the stock price. In this case, ns is same as the corresponding ns in binomial model. In 
other words, the middle branch doesn't change our delta and we use the same strategy as in 
binomial price model. 

 

def ns_combine(payoff, p, u): 

o_price = option_Binomial(payoff, p, u) 

     

    ns = np.zeros([2*T + 1, T + 1]) 

     

    for t in range(T - 1, -1, -1): 

        for i in range(0, 2*t + 1): 

            Vu = o_price[i+(T-t)-1, t+1] 

            Vd = o_price[i+(T-t)+1, t+1] 

            Vm = o_price[i+(T-t),t+1] 

            Su = stock[i+(T-t)-1, t+1] 

            Sd = stock[i+(T-t)+1, t+1] 

            Sm = stock[i+(T-t),t+1] 

            if Sd > strike: 
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                ns[i+(T-t), t] = (Vu-Vd)/(Su - Sd)            #when Su > Sm > Sd > k  

            else : 

                ns[i+(T-t), t]= ((Vu-Vd)/(Su - Sd)+(Vu-Vm)/(Su-Sm)+(Vm-Vd)/(Sm-Sd))/3 

                 

    return ns 

4. Errors from different strategies 

4.1. Setting parameters and price the option 

strike = 110 

call_payoff = np.maximum(stock[:, T] - strike, 0) 

N = 500000               # number of MC simulations 

p =[2/9, 5/9, 2/9]     #p_u, p_m, p_d 

X0 = option_Binomial(call_payoff, p, u)[T, 0] 

4.2. Strategy 1 

ns1 = ns_binomial(call_payoff, p, u) 

error1 = find_error(X0, ns1, call_payoff, N, p)[0] 

ST1 = find_error(X0, ns1, call_payoff, N, p)[1] 

4.2.1. Mean and standard deviation 

print('mean = ', np.mean(error1)) #The mean represents the accuracy of the option price. 

print('standard deviation = ', np.std(error1))  #The standar deviation represents the accuracy of 
the strategy (Ns). 

mean =  0.012067156963789558 

standard deviation =  0.04101871216632948 

4.2.2. Histogram 

plt.hist(error1, bins = 100, range = (0,0.1)) 

plt.show() 

 
Figure 1. Error frequency graph of Strategy 1 

4.2.3. Error distribution 

plt.scatter(ST1, error1) 

plt.xlabel('Log Stock Price') 

plt.ylabel('Errors') 

plt.show() 
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Figure 2. Error distribution of Strategy 1 

4.3. Strategy 2 

ns2 = ns_average(call_payoff, p, u) 

error2 = find_error(X0, ns2, call_payoff, N, p)[0] 

ST2 = find_error(X0, ns1, call_payoff, N, p)[1] 

4.3.1. Mean and standard deviation 

print('mean = ', np.mean(error2)) #The mean represents the accuracy of the option price. 

print('standard deviation = ', np.std(error2))  #The standar deviation represents the accuracy of 
the strategy (Ns). 

mean = 0.01205979059224262 

standard deviation = 0.039159863125921124 

4.3.2. Histogram 

plt.hist(error2, bins = 100, range = (0,0.1)) 

plt.show() 

 
Figure 3. Error frequency graph of Strategy 2 

4.3.3. Error distribution 

plt.scatter(ST2, error2) 

plt.xlabel('Log Stock Price') 

plt.ylabel('Errors') 

plt.show() 



Volume 1 Issue 12, 2020 

DOI: 10.6981/FEM.202012_1(12).0018 

125 

Frontiers in Economics and Management 

ISSN: 2692-7608 

 
Figure 4. Error distribution of Strategy 2 

4.4. Strategy 3 

ns3 = ns_combine(call_payoff, p, u) 

error3 = find_error(X0, ns3, call_payoff, N, p)[0] 

ST3 = find_error(X0, ns1, call_payoff, N, p)[1] 

4.4.1. Mean and standar deviation 

print('mean = ', np.mean(error3)) #The mean represents the accuracy of the option price. 

print('standard deviation = ', np.std(error3))  #The standar deviation represents the accuracy of 
the strategy (Ns). 

mean = 0.012230871858268566 

standard deviation = 0.04727977952724117 

4.4.2. Histogram 

plt.hist(error3, bins = 100, range = (0,0.1)) 

plt.show() 

 
Figure 5. Error frequency graph of Strategy 3 

4.4.3. Error distribution 

plt.scatter(ST3, error3) 

plt.xlabel('Log Stock Price') 

plt.ylabel('Errors') 

plt.show() 
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Figure 6. Error distribution of Strategy 3 

5. Conclusion 

Assuming T = 1000 and N = 500000, the mean of error1 is 0.01206, mean of error2 is 0.01205 
and mean of error3 is 0.01205 (Error2 ≈ Error3 ≈ Error1); the standard deviation values for 
these three strategies are 0.04101, 0.03915 and 0.04727 respectively (StandardDeviation2 <
StandardDeviation1 < StandardDeviation3) Then running Monte-Carlo simulation for times, 
the result shows their mean values stably stay around 0.012 and the standard deviation values 
are between 0.03 and 0.05. Comparing these three error distribution scatters, strategies 1 and 
2 produced the least abnormal points, all the other errors are less than 6.0 except one abnormal 
point; at the same time, strategy 3 produced more errors greater than 6.0 with a higher upper 

limit around 10.0. Recording to these data, Strategy 1 and 2 whose delta equal to 
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
 and 

(
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
+

𝑉𝑢−𝑉𝑚

𝑆𝑢−𝑆𝑚
+

𝑉𝑚−𝑉𝑑

𝑆𝑚−𝑆𝑑
)/3 are better than strategy 3. But in effect, the results from these three 

strategies are similar and in this situation there’s no obvious difference among these three 
strategies. 

This research provides a different researching orientation towards option trinomial model and 
a detailed Python coding description. While other researchers are managing to find the neutral 
probability. This work avoids this problem, to be replaced by adjusting the Ns value to make 
the error near to zero.  
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