
Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

118

Frontiers in Economics and Management

ISSN: 2692-7608

Strategies and Replication Errors of Option Pricing Using
Trinomial Model

Fanfei Chen1, Haoran Deng2, Mingheng Guo3

1University College London, London WC1E 6BT, United Kingdom;

2Wenzhou-Kean University, Wenzhou, Zhejiang 325060, China;

3London School of Economics, London WC2A 2AE, United Kingdom.

Abstract

Under the framework of the binomial model towards option pricing, this work aims to
find a way to price options in the trinomial model, with detailed procedures using Python.
Based on the limitation of the trinomial model, investors can’t price an option perfectly
by replicating portfolio. And this research constructs three different hedging strategies
by adjusting the value of Ns (number of underlying assets). Monte-Carlo simulation was
used in this report to compare the payoff errors and standard deviations between our
strategies and the initial binomial model. The result shows all three methods produce
similar tiny errors thus the authors think in the giving situation there’s no obvious
difference between these three models. The previous researches were focusing on
figuring out the delta value by creating non-arbitrage models, to find the neutral
probability, in the trinomial tree; this research is trying to modify the Ns model
according to the giving nature probability in the trinomial tree.

Keywords

Binominal Tree; Trinomial Tree; Delta Hedge; Option Pricing; Python.

1. Introduction

The Trinomial model is an option pricing model, modified from the Binomial model. In contrast
to the Binomial model, an option in the Trinomial model cannot be priced by a replicating
portfolio. This report aims to find a good strategy with only two primary assets, to calculate the
replication error, and to analyze the result. The 'Delta hedge' from the title is to find the
corresponding Ns (number of underlying assets) of the replicating portfolios at each short
period.

In some ideal situations, the initial wealth (X_0) of the replicating portfolio should be equal to
the option value. This study is going to find the error by comparing the portfolio with the
corresponding payoff of the option. In order to find the error, different hedging strategies (i.e.,
different Ns) and pricing methods were set to find X_0. And this work suggests and discusses
three different strategies including constructing Ns from a binomial model, trying to include all
three nodes of the trinomial model, and taking an average of Ns as well as the combined method.
Using these three methods with the X_0 from an appropriately calibrated (see below) Binomial
model, constructing and comparing the errors.

In order to improve the overall error, a sophisticated calibration was used to determine the
hedging strategy and the initial capital X_0. 'Calibrating' here means to choose u_B such that the
variance in the Binomial model is the same as in the Trinomial model. Indeed if the variances
are matched, option prices are more accurate.

2. Setting the parameters

T = 1000 # number of periods

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

119

Frontiers in Economics and Management

ISSN: 2692-7608

import math

u = math.exp(1.5/math.sqrt(T))

R = 1

S0 = 1

m = R

d=m**2/u

We need to make sure u*d=m*m in order to ensure that the tree is recombining.

3. Preparatory steps

3.1. Import the packages that we need

import numpy as np

import pandas as pd

import random

import matplotlib.pyplot as plt

import sympy as sp

import seaborn as sns

sns.set()

3.2. Present the metrics into a dataframe with their names

def variablename(name):

return [tpl[0] for tpl in filter(lambda x: name is x[1], globals().items())]

def print_matrix(x):

 x_df = pd.DataFrame(x)

 display(x_df, variablename(x))

3.3. Implementation of the trinomial stock price tree

stock = np.zeros([2*T + 1, T + 1])

for t in range(T + 1): # t represents the time periods

for i in range(t + 1):

 stock[-i-1-T,t] = S0 * (m ** (t - i)) * (u ** i)

compute the stock price that goes up

 stock[i+T, t] = S0 * (m ** (t - i)) * (d ** i)

compute the stock price that goes down

print_matrix(stock)

Table 1. Stork price after 1000 short periods

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

120

Frontiers in Economics and Management

ISSN: 2692-7608

3.4. Auxiliary: Binomial option pricer

The following function prices the option in the trinomial model as if it were a Binomial model
without the m node.

def option_Binomial(payoff, p, u):

price_Bin = np.zeros([2*T + 1, T + 1])

 price_Bin[:, T] = payoff

 u_b = calibrate_ub(p, u)

#using the variance from the Trinomial model to find suitable ub and db

d_b = m**2/u_b

 q = (R-d_b)/(u_b-d_b)[1]

 # probability of going up in calibrated Binomial model

 for t in range(T - 1, -1, -1):

 for i in range(0, 2*t + 1):

 price_Bin[i+(T-t), t] = (

 1 / R*(q*price_Bin[i+(T-t) - 1, t+] + (1-q) * price_Bin[i+(T-t) + 1, t+1]))[2]

 return price_Bin

3.5. To find the initial capital

In order to find 𝑋0, the following function finds the u in the situation where binomial variance
= trinomial variance.

Here we assume, by using the variance from the Trinomial model, the Binomial method would
provide a more accurate price.[3]

def calibrate_ub(p, u):

var = (p[0]/sum(p))*u**2 + (p[1]/sum(p))*m**2 + (p[2]/sum(p))*d**2 - ((p[0]/sum(p))*u +
(p[1]/sum(p))*m + (p[2]/sum(p))*d)**2 #variance of trinomial model

 x = sp.Symbol('x')

 f = (R*x**2)/(x+1) + R/(x*(x+1)) - R**2 - var #Var.Tri(u) = Var.Bin(x)

 x = sp.solve(f)

 ub = max(x)

 return ub

Trinomial tree variance :

𝑉𝑎𝑟(𝑌) = 𝐸[𝑌2] − (𝐸[𝑌])2 = 𝑝𝑢𝑢2 + 𝑝𝑚𝑚2 + 𝑝𝑑𝑑2 − (𝑝𝑢𝑢 + 𝑝𝑚𝑚 + 𝑝𝑑𝑑)2

Binomial tree variance:

𝑉𝑎𝑟(𝑌) = 𝐸[𝑌2] − (𝐸[𝑌])2 = 𝑞𝑢𝑢2 + (1 − 𝑞𝑢)𝑑2 − (𝑞𝑢𝑢 + (1 − 𝑞𝑢)𝑑)2

=
𝑅 − 1/𝑢

𝑢 − 1/𝑢
𝑢2 +

𝑢 − 𝑅

𝑢 − 1/𝑢
1/𝑢2 − 𝑅2 =

𝑅𝑢2

𝑢 + 1
+

𝑅 𝑢⁄

𝑢 + 1
− 𝑅2

3.6. Function to find the error via Monte-Carlo [4]

def find_error(X0, ns, payoff, N_of_sims, p):

 #randomly generate 1,0,-1 according to the probability we set above

c = np.random.multinomial(1, p, [N_of_sims, T])

 aux = [1, 0, -1]

 Y_raw = np.dot(c, aux)

 Y = ((u-d)/2 * (Y_raw + 1) + d - m) * Y_raw**2 + m

#turns 0 to m, -1 to d, and 1 to u

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

121

Frontiers in Economics and Management

ISSN: 2692-7608

π = ns * stock #Now we have N random draws of the stock price

 error_mc = np.zeros(N_of_sims)

 stock_mc = np.zeros(N_of_sims)

 for i in range(0, N_of_sims):

 X = X0

 idx = T #where we are currently on the grid

 for t in range(0, T):

 X = R*X + π[idx, t] * (Y[i, t] - R) # Self-financing[5,6]

 idx -= int(Y_raw[i, t])

 stock_mc[i] = math.log(stock[idx, t])

 error_mc[i] = X - payoff[idx]

#Compare X(Wealth) with corresponding payoff of the option

 return [error_mc, stock_mc]

𝑆𝑒𝑙𝑓 − 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑛𝑔: 𝑋𝑗 = 𝑁𝑗
𝐵𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗

𝑋𝑗+1 = 𝑁𝑗
𝐵𝐵𝑗+1 + 𝑁𝑗

𝑆𝑆𝑗+1

= 𝑁𝑗
𝐵𝑅𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗

𝑆𝑗+1

𝑆𝑗

= 𝑅(𝑁𝑗
𝐵𝐵𝑗 + 𝑁𝑗

𝑆𝑆𝑗) + 𝑁𝑗
𝑆𝑆𝑗(

𝑆𝑗+1

𝑆𝑗
− 𝑅)

= 𝑅𝑋𝑗 + 𝜋𝑗(𝑌𝑗+1 − 𝑅)

3.7. Strategy to find Delta (ns)

3.7.1. Strategy 1:

construct Ns by forgetting about the middle branch using the Binomial strategy: 𝑁𝑠 =
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑

def ns_binomial(payoff, p, u):

o_price = option_Binomial(payoff, p, u)

 ns = np.zeros([2*T + 1, T + 1])

 for t in range(T - 1, -1, -1):

 for i in range(0, 2*t + 1):

 Vu = o_price[i+(T-t)-1, t+1]

 #option value when stock price goes up

 Vd = o_price[i+(T-t)+1, t+1]

 #option value when stock price goes down

 Su = stock[i+(T-t)-1, t+1]

 Sd = stock[i+(T-t)+1, t+1]

 ns[i+(T-t), t] = (Vu-Vd)/(Su - Sd)

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

122

Frontiers in Economics and Management

ISSN: 2692-7608

 return ns

3.7.2. Strategy 2:

construct Ns by taking the average of Ns , then we are able include all three notes to get Ns

rather than only using u and d: 𝑁𝑠 = (
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
+

𝑉𝑢−𝑉𝑚

𝑆𝑢−𝑆𝑚
+

𝑉𝑚−𝑉𝑑

𝑆𝑚−𝑆𝑑
)/3

def ns_average(payoff, p, u):

o_price = option_Binomial(payoff, p, u)

 ns = np.zeros([2*T + 1, T + 1])

 for t in range(T - 1, -1, -1):

 for i in range(0, 2*t + 1):

 Vu = o_price[i+(T-t)-1, t+1]

 Vd = o_price[i+(T-t)+1, t+1]

 Vm = o_price[i+(T-t),t+1] #option value when stock price stays constant

 Su = stock[i+(T-t)-1, t+1]

 Sd = stock[i+(T-t)+1, t+1]

 Sm = stock[i+(T-t),t+1]

 ns[i+(T-t), t] = ((Vu-Vd)/(Su - Sd)+(Vu-Vm)/(Su-Sm)+(Vm-Vd)/(Sm-Sd))/3

 return ns

3.7.3. Strategy 3:

In Trinomial model, it is not possible to exactly replicate the option with only one risky asset in
some cases(nodes) when the payoff of option is not linear to the stock price. In this case, we use
the average method to find ns.

However, there are some cases when Su > Sm > Sd > Strike Price and the payoff of option is
linear to the stock price. In this case, ns is same as the corresponding ns in binomial model. In
other words, the middle branch doesn't change our delta and we use the same strategy as in
binomial price model.

def ns_combine(payoff, p, u):

o_price = option_Binomial(payoff, p, u)

 ns = np.zeros([2*T + 1, T + 1])

 for t in range(T - 1, -1, -1):

 for i in range(0, 2*t + 1):

 Vu = o_price[i+(T-t)-1, t+1]

 Vd = o_price[i+(T-t)+1, t+1]

 Vm = o_price[i+(T-t),t+1]

 Su = stock[i+(T-t)-1, t+1]

 Sd = stock[i+(T-t)+1, t+1]

 Sm = stock[i+(T-t),t+1]

 if Sd > strike:

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

123

Frontiers in Economics and Management

ISSN: 2692-7608

 ns[i+(T-t), t] = (Vu-Vd)/(Su - Sd) #when Su > Sm > Sd > k

 else :

 ns[i+(T-t), t]= ((Vu-Vd)/(Su - Sd)+(Vu-Vm)/(Su-Sm)+(Vm-Vd)/(Sm-Sd))/3

 return ns

4. Errors from different strategies

4.1. Setting parameters and price the option

strike = 110

call_payoff = np.maximum(stock[:, T] - strike, 0)

N = 500000 # number of MC simulations

p =[2/9, 5/9, 2/9] #p_u, p_m, p_d

X0 = option_Binomial(call_payoff, p, u)[T, 0]

4.2. Strategy 1

ns1 = ns_binomial(call_payoff, p, u)

error1 = find_error(X0, ns1, call_payoff, N, p)[0]

ST1 = find_error(X0, ns1, call_payoff, N, p)[1]

4.2.1. Mean and standard deviation

print('mean = ', np.mean(error1)) #The mean represents the accuracy of the option price.

print('standard deviation = ', np.std(error1)) #The standar deviation represents the accuracy of
the strategy (Ns).

mean = 0.012067156963789558

standard deviation = 0.04101871216632948

4.2.2. Histogram

plt.hist(error1, bins = 100, range = (0,0.1))

plt.show()

Figure 1. Error frequency graph of Strategy 1

4.2.3. Error distribution

plt.scatter(ST1, error1)

plt.xlabel('Log Stock Price')

plt.ylabel('Errors')

plt.show()

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

124

Frontiers in Economics and Management

ISSN: 2692-7608

Figure 2. Error distribution of Strategy 1

4.3. Strategy 2

ns2 = ns_average(call_payoff, p, u)

error2 = find_error(X0, ns2, call_payoff, N, p)[0]

ST2 = find_error(X0, ns1, call_payoff, N, p)[1]

4.3.1. Mean and standard deviation

print('mean = ', np.mean(error2)) #The mean represents the accuracy of the option price.

print('standard deviation = ', np.std(error2)) #The standar deviation represents the accuracy of
the strategy (Ns).

mean = 0.01205979059224262

standard deviation = 0.039159863125921124

4.3.2. Histogram

plt.hist(error2, bins = 100, range = (0,0.1))

plt.show()

Figure 3. Error frequency graph of Strategy 2

4.3.3. Error distribution

plt.scatter(ST2, error2)

plt.xlabel('Log Stock Price')

plt.ylabel('Errors')

plt.show()

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

125

Frontiers in Economics and Management

ISSN: 2692-7608

Figure 4. Error distribution of Strategy 2

4.4. Strategy 3

ns3 = ns_combine(call_payoff, p, u)

error3 = find_error(X0, ns3, call_payoff, N, p)[0]

ST3 = find_error(X0, ns1, call_payoff, N, p)[1]

4.4.1. Mean and standar deviation

print('mean = ', np.mean(error3)) #The mean represents the accuracy of the option price.

print('standard deviation = ', np.std(error3)) #The standar deviation represents the accuracy of
the strategy (Ns).

mean = 0.012230871858268566

standard deviation = 0.04727977952724117

4.4.2. Histogram

plt.hist(error3, bins = 100, range = (0,0.1))

plt.show()

Figure 5. Error frequency graph of Strategy 3

4.4.3. Error distribution

plt.scatter(ST3, error3)

plt.xlabel('Log Stock Price')

plt.ylabel('Errors')

plt.show()

Volume 1 Issue 12, 2020

DOI: 10.6981/FEM.202012_1(12).0018

126

Frontiers in Economics and Management

ISSN: 2692-7608

Figure 6. Error distribution of Strategy 3

5. Conclusion

Assuming T = 1000 and N = 500000, the mean of error1 is 0.01206, mean of error2 is 0.01205
and mean of error3 is 0.01205 (Error2 ≈ Error3 ≈ Error1); the standard deviation values for
these three strategies are 0.04101, 0.03915 and 0.04727 respectively (StandardDeviation2 <
StandardDeviation1 < StandardDeviation3) Then running Monte-Carlo simulation for times,
the result shows their mean values stably stay around 0.012 and the standard deviation values
are between 0.03 and 0.05. Comparing these three error distribution scatters, strategies 1 and
2 produced the least abnormal points, all the other errors are less than 6.0 except one abnormal
point; at the same time, strategy 3 produced more errors greater than 6.0 with a higher upper

limit around 10.0. Recording to these data, Strategy 1 and 2 whose delta equal to
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
 and

(
𝑉𝑢−𝑉𝑑

𝑆𝑢−𝑆𝑑
+

𝑉𝑢−𝑉𝑚

𝑆𝑢−𝑆𝑚
+

𝑉𝑚−𝑉𝑑

𝑆𝑚−𝑆𝑑
)/3 are better than strategy 3. But in effect, the results from these three

strategies are similar and in this situation there’s no obvious difference among these three
strategies.

This research provides a different researching orientation towards option trinomial model and
a detailed Python coding description. While other researchers are managing to find the neutral
probability. This work avoids this problem, to be replaced by adjusting the Ns value to make
the error near to zero.

References

[1] Cox, J.C, Ross, S.A, Rubinstein, M. (1979) Option Pricing: A Simplified Approach. Journal of Financial
Economics 7: 229-263.

[2] Shreve, S.E. (2004) Stochastic Calculus for Finance I: The Binomial Asset Pricing Model. Springer-
Verlag, New York.

[3] Haahtela, T. (2010). Recombining trinomial tree for real option valuation with changing volatility.
In 14th Annual International Conference on Real Options theory meets practice, Rome, Italy.

[4] Dar, A.A, Anuradha, N., Rahman, B.S.A. (2017) Option Pricing Using Monte Carlo Simulation. British
Journal of Economics, Finance and Management Sciences: March 2017, Vol. 13 (2)

[5] Bergman, Y.Z. (1981) A Characterization of Self-Financing Portfolio Strategies. Research Program
in Finance Working Papers from University of California at Berkeley: No 113.

[6] Macdonald, A. S. (1997). The hypotheses underlying the pricing of options: a note on a paper by
Bartels. Paper presented at Proceedings of the 7th International AFIR Colloquium, Cairns: 617-630.

