帳號:guest(18.226.52.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭建甫
作者(外文):Kuo, Chien-Fu
論文名稱(中文):數位設計流程中的動作產生方法
論文名稱(外文):Human Motion Generation in Digital Design Process
指導教授(中文):王茂駿
指導教授(外文):Wang, Mao-Jiun
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:913844
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:80
中文關鍵詞:數位人體模型動作產生虛擬實境方法時間衡量語意數位工廠
外文關鍵詞:Digital human modelingMotion generationVirtual realityMethod time measurementSemanticsDigital factory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
先進的資訊科技已逐步實現了企業中數位設計流程的願景,而在先期設計階段中引進數位人體模型的應用也已成為流程中重要的設計活動。然而如何快速的產生合理且具有實用價值的人體資訊以協助進行設計上的考量,一直是採納此技術的關鍵。因此,本研究著重於發展具實用價值的人體動作產生方法,所發展出的方法包括有即時性的動作產生技術以及非即時性的動作控制機制。
首先提出的「互動式虛擬評估法」為一即時性的動作產生方法與人因評估流程。將虛擬實境、動作擷取與數位人體模型三大技術整合。設計師與工程師可以在虛擬實境裡快速的建造產品與系統介面的虛擬原型,使用者能融入虛擬實境與其進行互動,並藉由數位人體模型上發展的評估方法來對設計概念進行測試評估,以進行改善。此方法被應用於一飛彈發射車內控制介面的設計評估。接著發展出的「MTM動作產生機制」為一非即時性的標準語意控制方法,目的在於建立自動且標準化的動作產生流程與系統。此方法採用業界標準的Method Time Measurement (MTM) 此作業時間規範來做為動作語意的輸入基礎,並藉由預設的動作產生機制,來產生標準化的作業導向人體模擬。「自然語言動作產生機制」則為上一研究成果的延續,藉由將輸入模式改變為直覺的自然語言、並增加動作產生機制的功能、引進車廠實證研究得到的時間資料庫,來加強語意產生動作系統的準確性與實用價值,此方法已建立於一PLM系統之中,並應用於車廠中來進行工作與工作站的設計評估。
本研究所提出的人體動作產生機制與系統,可協助企業進行從產品設計、介面設計到工作與工作站設計的先期人因工程評估。
The digital design process is progressively realized by advanced information technology nowadays. Using digital human model (DHM) in the early phase of design has become a vital practice in industry. However, how to simulate the realistic human motion, to facilitate the motion generating process, and to produce valuable human information are always the main concerns in this field. Therefore, this research focused on developing the practicable motion generating methods including the real-time interactive method and the semantic methods.
First of all, the Interactive Virtual Evaluation (IVE) method was proposed in this research. By integrating the VR technology, motion capture, and digital human model (DHM) system, the virtual prototypes of a system and interface design can be created and tested in the digital world. The proposed method has been applied to the controller interface design of a missile launching vehicle.
Further, the semantic method, Motion Generation from MTM, was to automate and standardize the motion creation process. A time study method known as “Method Time Measurement (MTM)” was used as the basis for defining the operational motion semantics which can be used by the designer to produce the human simulation in the digital environment. Motion Generation from Natural Language was the subsequent research of the MTM method. Through changing the input from MTM semantics to natural language, increasing the functions in motion generation algorithm, and introducing empirical time database accumulated from automotive industry, the semantic method was able to enhance in its accuracy and practical value. These semantic methods have been applied to automotive industry for work and workplace design.
中文摘要 1
ABSTRACT 2
致謝 3
TABLE OF CONTENTS 4
FIGURE LIST 6
CHAPTER 1 INTRODUCTION 9
1.1 THE BACKGROUND OF THE RESEARCH 9
1.2 THE PURPOSE OF THIS STUDY 10
1.3 THE FRAMEWORK OF THIS DISSERTATION 11
CHAPTER 2 DIGITAL HUMAN IN DESIGN PROCESS 12
2.1 VIRTUAL PROTOTYPING IN DESIGN PROCESS 12
2.2 DIGITAL HUMAN MODELING IN DESIGN PROCESS 14
2.2.1 The ergonomics aspect in digital design process 16
2.2.2 The efficiency aspect in digital design process 17
CHAPTER 3 HUMAN MOTION CONTROL 20
3.1 VIRTUAL REALITY 20
3.2 INVERSE KINEMATICS 21
3.3 MOTION CAPTURE 21
3.4 MOTION EDITING 21
3.5 MOTION GENERATION FROM SEMANTICS 22
CHAPTER 4 INTERACTIVE VIRTUAL EVALUATION 24
4.1 VIRTUAL EVALUATION 24
4.1.1 IK-based DHM 26
4.1.2 Virtual prototyping: human-product interaction kit 27
4.1.3 Virtual testing 30
4.1.4 DHM simulation 32
4.1.5 Design Reviewing 34
4.2 IMPLEMENTATION 34
4.3 DISCUSSION 36
CHAPTER 5 MOTION GENERATION FROM MTM SEMANTICS 39
5.1 MOTION GENERATION 39
5.1.1 Motion editing tool 40
5.1.2 Motion generation from MTM semantics 43
5.2 IMPLEMENTATION 48
5.2.1 System architecture 48
5.2.2 Interface tier 48
5.2.3 Function tier 49
5.2.4 Data tier 51
5.2.5 The scenario of evaluating work and workplace design 52
5.3 DISCUSSION 53
CHAPTER 6 MOTION GENERATION FROM NATURAL LANGUAGE 55
6.1 MOTION GENERATION FROM NATURAL LANGUAGE 55
6.1.1 Virtual prototyping 56
6.1.2 Natural language instruction 59
6.1.3 MTM translator 61
6.1.4 Motion generator 61
6.2 IMPLEMENTATION 64
6.2.1 Example of generating motion from MGS program 64
6.2.2 System validation 68
6.3 DISCUSSION 70
CHAPTER 7 CONCLUSIONS 71
7.1 INTERACTIVE VIRTUAL EVALUATION (IVE) 71
7.2 MOTION GENERATION FROM MTM SEMANTICS 72
7.3 MOTION GENERATION FROM NATURAL LANGUAGE 72
7.4 FURTHER RESEARCHES 73
REFERENCES 75
Askew, L.J., An, K.N., Morrey, B.F., and Chao, E.Y., 1987. Isometric Elbow Strength in Normal Individual. Clinical Orthopedics and Related Research, 222, 261-266.
Arafa, Y., Kamyab, K., Kshirsagar, S., Magnenat-Thalmann, N., Guye-Vuilleme, A., and Thalmann, D., 2002. Two approaches to Scripting Character Animation. Proceeding of the AAMAS Workshop on Embodied Conversational Agents.
Badler, N.I., Bindiganavale, R., and Bourne, J., 1998. A parameterized action representation for virtual human agents. Workshop on Embodied Conversational Characters, North Tahoe, CA.
Badler, N.I., Erignac, C.A., and Liu, Y., 2002. Virtual humans for validating maintenance procedures. Communication of the ACM, 45(7), 56-63.
Baxter, M., 1995. Product design. Chapman & Hall Publication, London.
Boesnach, I., Moldenhauer, J., Fischer, A., and Stein, T., 2006. Context oriented motion generation: A new scheme for humanoid robot control. IEEE International Symposium on Robot and Human Interactive Communication, 304-308.
Brazier, J., Tomko, B., and Brow, T., 2003. The car that Jill built. The 6th Annual Applied Ergonomics Conference. Dallas, Texas, UAS.
Bruderlin, A. and Williams, L., 1995. Motion signal processing. Computer Graphics, 29 (Annual Conference Series), 97-104.
Case, K., Porter, J.M., and Bonney, M., 1990. SAMMIE: a man and workplace modeling system. In Karkowski, W., Genaidy, A.M., and Asfour, S.S. (Eds.), Computer-Aided Ergonomics, London, Taylor& Francis, pp. 31-56.
Chaffin, D.B., Faraway, J., Zhang, X., and Wooley, C., 2000. Stature, age, and gender effect on reach motion postures. Human Factors, 42(3), 408-420.
Chaffin, D.B., 2002. On simulating human reach motion for ergonomics analyses. Human Factors and Ergonomics in Manufacturing, 12, 235-247.
Chang, S.W., Wang, M.J., and Delleman N.J, 2007. Effects of the Angle of Approaching a Spot for a Manufacturing Action on Whole-Body Orientation and Position. Technical Paper 2007-01-2481, SAE International, Detroit, Michigan.
Corbo, P., Germani, M., and Mandorli, F., 2004. Aesthetic and functional analysis for product model validation in reverse engineering applications. Computer Aided Design, 36(1), 65–74.
Duffy, V.G., 2004. Using the Virtual Build methodology for computer-aided ergonomics and safety. In Fallon, E.F. and Karwowski, W. (Eds.), HAAMAHA 2004, 9th International Conference on Human Aspects of Advanced Manufacturing and Hybrid Automation, Galway, Ireland, pp. 460-469.
Denkena, B., Shpitalni, M., Kowalski, P., Molcho, G., and Zipori, Y., 2007. Knowledge Management in Process Planning. CIRP Annals-Manufacturing Technology, 56(1), 175-180.
Feyen, R., Liu, Y., Chaffin, D., Jimmerson, G., and Josepg, B., 2000. Computer-aided ergonomics: a case study of incorporating ergonomics analyses into workplace design. Applied Ergonomics, 31, 291-300.
Fitts, P.M., 1954. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381-391.
Garg, A. and Chaffin, D.B., 1975. A biomechanic computerized simulation of human strength. AIIE Transactions, 1, 1-15.
Garg, A., 1976. A Metabolic Rate Prediction Model for Manual Materials Handling Jobs. PhD thesis, University of Michigan.
Gausemeier, J., Frank, U., and Steffen, D., 2006. Specifying the principle solution of tomorrow’s mechanical engineering products. Proceedings of the 9th International Design Conference DESIGN 2006, Dubrovnik, Croatia.
Geuss, H., 1994. Development of an anthropometry measurement system for the CAD man model RAMSIS, PhD Thesis, TU Munich.
Gleicher, M., 2001. Motion Path Editing. Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics.
Goutal, L., 2000. Ergonomics assessment for aircraft cockpit using the virtual mock-up. In Landau, K. (Ed.), Ergonomic Software Tools in Product and Workplace Design, Stuttgart, Germany, fAO Institut für Arbeitsorganisation, pp.173-182.
H-Anim Working Group, 2000. ISO/IEC FCD 19774:200x, Humanoid Animation, Annex B, Nominal body dimensions and levels of articulation.
Kayis, B. and Iskander, P.A., 1994. Three-dimensional human model for the IBM/CATIA system. Applied Ergonomics, 25(6), 395-397.
Kuo, C.F. and Chu, C.H., 2005. An online ergonomic evaluator for 3D product design. Computers in Industry, 56, 479-492.
Kuo. C.F. and Wang M.J., 2009. Motion generation from MTM semantics. Computers in Industry, 60(5), 339-348.
Lannersten, L., Harms-Ringdahl, K., Schüldt, K., and Ekholm, J., 1993. Isometric strength in the flexors, abductors, and external rotators of the shoulder. Clinical Biomechanics, 8(2), 35-42.
Lee, K.H., Choi, M.G., Lee, J., 2006. Motion patches: building blocks for virtual environments annotated with motion data. Proceedings of ACM SIGGRAPH, Annual Conference Series, ACM SIGGRAPH, 898-906.
Li, Y. and Frimpong, S., 2008. Hybrid virtual prototype for analyzing cable shovel component stress. International Journal of Advanced Manufacturing Technology, 37, 423-430.
Lu, L.Y., 1993. The Practices of MTM Techniques. Hwa Tai Publishing, Taipei.
MacKenzie, I.S., 1992. Fitts' law as a research and design tool in human-computer interaction. Human-Computer Interaction, 7, 91-139.
McAtamney, L. and Corlett, N., 1993. RULA: A survey method for investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91-99.
National Institute for Occupational Safety and Health, 1981. A Work Practices Guide for Manual Lifting, TR81-122, U.S. Dept. of Health and Human Services (NIOSH), Cincinnati, OH.
National Institute for Occupational Safety and Health, 1994. Applications Manual for The Revised NIOSH Lifting Equation. TR94-110, U.S. Dept. of Health and Human Services (NIOSH), Cincinnati, OH.
Parametric Technology Corporation (PTC), 2008. New solution optimizes human-product interactions. PTC press releases, http://www.ptc.com/.
Phillips, C.B. and Badler, N.I., 1988. Jack: A toolkit for manipulating articulated figures. ACM/SIGGRAPH Symposium on User Interface Software, Banff, Canada, ACM, pp.221-229.
Rix, J., Heidger, A., Helmstadter, C., Quester, R., and Ringhof, T., 2000. Integration of virtual human in CA design review. In: Landau K. (Ed.), Ergonomic Software Tools in Product and Workplace Design, Stuttgart, Germany, IfAO Institut für Arbeitsorganisation, pp. 183-194.
Rose, C., Cohen, M.F., and Bodenheimer, B., 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications, 18(5), 32-40.
Seidl, A., 1997. RAMSIS: a new CAD-tool for ergonomic analysis of vehicles developed for the German automotive industry. Automotive Concurrent / Simultaneous Engineering SAE Special Publications, 1233, 51-57.
Sengupta, A.K. and Das, B., 1997. Human: An Autocad based three-dimensional anthropometric human model for workstation design. International Journal of Industrial Ergonomics, 19(5), 345-352.
Snook, S.H. and Ciriello, V.M., 1991. The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics, 34, 1197-1213.
Souza, M.C.F., Sacco, M., and Porto, A.J.V., 2006. Virtual Manufacturing as a way for the factory of the future. Journal of Intelligent Manufacturing, 17, 725-735.
Troup, J.D. and Chapman, A.E., 1969. The static strength of the lumbar erectores spinae. Journal of Anatomy, 105(1), 186-187.
Unuma, M., Anjyo, K., and Takeuchi, R., 1995. Fourier principles for emotion-based human figure animation. Proceedings of ACM SIGGRAPH.
Wang, G., 2002. Definition and Review of Virtual Prototyping. ASME Transactions, Journal of Computing and Information Science in Engineering, 2, 232-236.
Wang, M.Y., Wang, M.J., Yeh, W.Y., Shih, Y.C., and Lin, Y.C., 1999. Towards an ergonomics work environment: anthropometry survey for Taiwan workers. International Journal of Industrial Ergonomics, 23, 3-8.
Westkämper, E., 2008. The Proactive Initiative ManuFuture Roadmap. In Jovane, F., Westkämper, E., and Williams, D. (Eds.) The ManuFuture Road, Springer Berlin Heidelberg, pp 123-147.
Witkin, A. and Popovic, Z., 1995. Motion warping. In: Robert C. (Ed.), SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pp 105–108.
Wöhlke, G. and Schiller, E., 2005. Digital Planning Validation in automotive industry. Computers in industry, 56, 393-405.
Zülch, G. and Grieger, T., 2005. Modelling of occupational health and safety aspects in the Digital Factory. Computers in Industry, 56, 384–392.
Zäh, M., Möller, N., and Vogl, W., 2005. Symbiosis of Changeable and Virtual Production – The emperor’s New Clothes or Key Factor for Future Success? In Zäh, M. and Reinhardt, G. (Eds.), 1st International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2005), Garching, Germany, Technische Universität Munchen.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *