帳號:guest(13.58.36.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李季儒
作者(外文):Chi-Ju Lee
論文名稱(中文):醋酸脫水之整廠設計與控制
論文名稱(外文):Plantwide Design and Control of Acetic Acid Dehydration Process
指導教授(中文):鄭西顯
王聖潔
指導教授(外文):Shi-Shang Jang
San-Jang Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:933646
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:75
中文關鍵詞:醋酸脫水非均勻相共沸蒸餾熱整合塔整廠
外文關鍵詞:acetic acid dehydrationheterogeneous azeotropic distillationthermally coupled distillation columnplantwide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以國內耗能量甚大的醋酸脫水製程為對象,探討進料中包含雜質-乙酸甲酯與對位二甲苯之整廠省能設計與整廠控制策略。
在整廠省能設計方面,由於醋酸與水沸點相近,本研究以非均勻相共沸蒸餾技術分離此近沸混合物,藉夾帶劑乙酸異丁酯之添加使分離程序容易進行,同時減少傳統蒸餾所需之能源。並進一步使用完全熱整合省能技術,以隔牆塔分離水相之三個產物-水、乙酸甲酯與乙酸異丁酯,如此可減少蒸餾塔硬體設備費用,且模擬結果顯示隔牆塔不但比傳統塔節省約28%的能源消耗,還能分離出純度較高的產物。
在整廠控制策略方面,本研究利用作動變數為夾帶劑補充量與再沸器熱負載之兩個溫度控制環路的執行,使醋酸脫水塔塔底醋酸與水相醋酸濃度符合規格,並以SVD與閉環路分析選擇兩個控制板層,發現進行夾帶劑容量控制時之設定點不需要改變,且可從此分析中挑選出所需夾帶劑補充量最少的板層位置。但再沸器熱負載的控制環路,其設定點則需改變,本研究利用外環路為塔底溫度之串級控制策略執行,使產品符合規格。在隔牆塔部份,則是利用SVD與RGA挑選並配對作動變數與控制變數,所建立的三個溫度控制環路在設定點不需更改的情況下,即可維持隔牆塔三個產品純度。
The separation of water and acetic acid is one of high energy consuming processes. This research studies a various strategies of energy saving in such a commercial process which contains impurities of MA and PX. Since the normal boiling points of water and acetic acid are very close, the best way to separate them is to use an entrainer, iso-butyl acetate in this case, to change their relative volatility. Using heterogeneous azeotropic distillation requires much less energy than the conventional distillation.
We also propose the newly developed technology, thermal coupled distillation column, to separate three components. The study results show that the thermal coupled distillation column, divided wall column, not only reduce the capital cost, but also save energy as high as 28% compared with the conventional column.
The manipulated variables are entrainer makeup and reboiler duty used to implement two temperature control loops to obtain the products purities of acetic acid dehydration column. SVD analysis is also used to choose two controlled stages, and we find that the set point of the controlled stage isn’t needed to be changed under entrainer inventory control. However, the set point of the other stage controlled by reboiler duty is needed to be changed, thus we use cascade control to solve this problem. About DWC, we use SVD and RGA to build the control strategy and we can obtain the products purities under these three temperature control loops.
目錄

摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 共沸蒸餾 1
1.2 熱整合蒸餾 5
1.3 文獻回顧 10
1.3.1 共沸蒸餾 10
1.3.2 熱整合蒸餾 12
1.4 研究動機與目的 15
第二章 熱力學模式 17
2.1 模式與參數之建立 17
2.2 蒸餘曲線 19
第三章 穩態設計 25
3.1 整廠設計 25
3.1.1 醋酸脫水塔之設計 25
3.1.2 隔牆塔之設計 27
3.1.3 整廠設計 29
3.2 自由度分析 31
3.3模擬結果 31
3.3.1 醋酸脫水傳統整廠設計 34
3.3.2 醋酸脫水省能整廠設計 37
3.3.3 能量比較 41
第四章 動態模擬與控制 42
4.1控制策略一 42
4.1.1 醋酸脫水塔 43
4.1.2 隔牆塔 43
4.1.3 整廠控制之動態模擬 48
4.2控制策略二 55
4.3控制策略三 58
4.3.1 醋酸脫水塔 59
4.3.2 隔牆塔 65
4.3.3 整廠控制之動態模擬 67
第五章 結論 69
附錄 符號說明 71
參考文獻 72


圖目錄

圖1.1 乙醇與水在1大氣壓下溫度氣-液相組成之關係 2
圖1.2 丙酮與氯仿在1大氣壓下溫度與氣-液相組成之關係 3
圖1.3 正丁醇與水在1大氣壓下溫度與氣-液-液相組成之關係 3
圖1.4 乙醇+水共沸蒸餾製程示意圖 5
圖1.5 直接排列塔 6
圖1.6 間接排列塔 7
圖1.7 部分熱整合塔 7
圖1.8 主塔結合側精餾塔 8
圖1.9 主塔結合側氣提塔 8
圖1.10 Petlyuk塔 9
圖1.11 隔牆塔 9
圖2.1 非均相簡單批式蒸餾 20
圖2.2 蒸餘曲線圖 21
圖2.3 不穩定節點、穩定節點及鞍點之詳細圖示 21
圖2.4 水-醋酸-乙酸異丁酯系統蒸餘曲線圖 22
圖2.5 水-醋酸-乙酸甲酯系統蒸餘曲線圖 23
圖2.6 水-醋酸-對位二甲苯系統蒸餘曲線圖 23
圖3.1 醋酸脫水塔之穩態設計 26
圖3.2 分離水相三個產物之Petlyuk塔 28
圖3.3 分離水相三個產物之隔牆塔 29
圖3.4 醋酸脫水塔傳統整廠設計 30
圖3.5 醋酸脫水省能整廠設計 30
圖3.6 醋酸脫水塔C1溫度分布 33
圖3.7 醋酸脫水塔C1組成分布 33
圖3.8 C2溫度分布 34
圖3.9 C3溫度分布 35
圖3.10 C2組成分布 35
圖3.11 C3組成分布 36
圖3.12 前分餾器溫度分布 37
圖3.13 主塔溫度分布 38
圖3.14 前分餾器組成分布 38
圖3.15 主塔組成分布 39
圖3.16 不同VR,LR下的能量曲面圖 40
圖4.1 改變再沸器熱負載之開環路分析 43
圖4.2 以LSV挑選之左奇異向量圖 45
圖4.3 以DSV挑選之左奇異向量圖 45
圖4.4 控制策略一之控制架構 48
圖4.5 控制策略一之進料流量改變 20 mol%動態應答 50
圖4.6 控制策略一之進料組成改變 20 mol%動態應答 52
圖4.7 控制策略一氣體分流比改變之動態應答 54
圖4.8 進料醋酸組成改變 1 mol%對各板溫度之閉環路分析 55
圖4.9 控制策略二之控制架構 56
圖4.10 控制策略二之進料組成改變 20 mol%動態應答 58
圖4.11 SVD分析之左奇異向量 59
圖4.12 進料醋酸/水流量為1200/800 kmol/h時,不同夾帶劑補 充量下之溫度分布圖 61
圖4.13 進料醋酸/水流量為800/1200 kmol/h時,不同夾帶劑補 充量下之溫度分布圖 62
圖4.14 進料組成改變之醋酸脫水塔溫度分布圖 62
圖4.15 進料組成改變時,前分餾器的溫度變化 65
圖4.16 進料組成改變時,主塔的溫度變化 65
圖4.17 控制策略三之控制架構 66
圖4.18 控制策略三之進料組成改變 20 mol%動態應答 68



表目錄

表1.1 共沸蒸餾系統在國內可應用之領域 15
表2.1 各成份的基本性質 17
表2.2 NRTL參數 19
表2.3 參數預測共沸點組成與溫度和實驗數據的比較 19
表3.1 進料流量表 26
表3.2 醋酸脫水傳統整廠模擬結果 36
表3.3 醋酸脫水省能整廠設計結果 39
表3.4 傳統蒸餾與隔牆塔能量消耗表 41
表4.1 進料醋酸/水流量為1200/800 kmol/h時,不同控制板數之 夾帶劑補充量 64
表4.2 進料醋酸/水流量為800/1200 kmol/h時,不同控制板數之 夾帶劑補充量 64
Abdul Mutalib, M. I., Smith, R. (1998) Operation and Control of Dividing Wall Distillation Columns. Part 1: Degrees of Freedom and Dynamic Simulation. Trans. Inst. Chem. Eng., 76, 308-318

Abdul Mutalib, M. I., Smith, R. (1998) Operation and Control of Dividing Wall Distillation Columns. Part 2: Simulation and Pilot Plant Studies Using Temperature Control. Trans. Inst. Chem. Eng., 76, 319-334

Adrian, T., Schoenmakers, H., Boll, M. (2004) Model Predictive Control of Integrated Unit Operations: Control of a Divided Wall Column. Chem. Eng. Proc., 43, 347-355

Agrawal, R., Fidkowski, A. T. (1998) More Operable Arrangements of Fully Thermally Coupled Distillation Columns. AIChE J., 44, 2565-2568

Alatiqi, I. M., Luyben, W. L. (1985) Alternative Distillation Configurations for Separating Ternary Mixtures with Small Concentrations of Intermediate in the Feed. Int. Eng. Chem. Process Des. Dev., 24, 500-506

Annakou, O., Mizsey, P. (1996) Rigorous Comparative Study of Energy-Integrated Distillation Schemes. Ind. Eng. Chem. Res., 35, 1877-1885

Bekiaris, N., Meski, G. A., Radu, C. M., Morari, M. (1993) Multiple Steady State in Homogeneous Azeotropic Distillation. Ind. Eng. Chem. Res., 32, 2023-2038

Bekiaris, N., Meski, G. A., Morari, M. (1996) Multiple Steady State in Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res., 35, 207-227

Chien, I. L., Zeng, K. L., Chao, H. Y. (2004) Design and Control of Acetic Acid Dehydration System via Heterogeneous Azeotropic Distillation. Chem. Eng. Sci., 59, 4547-4567

Chien, I. L., Huang, H. P., Gau, T. K., Wang, C. H. (2005) Influence of Feed Impurity on the Design and Operation of an Industrial Acetic Acid Dehydration Column. Ind. Eng. Chem. Res., 44, 3510-3521

Dunnebier, G., Pantelides, C. C. (1999) Optimal Design of Thermally Coupled Distillation Columns. Ind. Eng. Chem. Res., 38, 162-176

Fidkowski, Z., Krolikowski, L. (1990) Energy Requirements of Nonconventional Distillation Systems. AIChE J. 36, 1275-1278

Fien, Gert-Jan A. F., Liu, Y. A. (1994) Heuristic Synthesis and Shortcut Design of Separation Processes Using Residue Curve Maps: A Review. Ind. Eng. Chem. Res. 33, 2505-2522

Finn, A. J. (1993) Consider Thermally Coupled Distillation. Chem. Eng. Proc. 89, 41-45

Gmehling, J., Menke, J., Krafczyk, J., Fischer, K. (2004) Azeotropic Data. Wiley-VCH, Weinheim

Halvorsen, I. J., Skogestad, S. (1997) Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior. Comput. Chem. Eng., 21, 249-254

Halvorsen, I. J., Skogestad, S. (2004) Shortcut Analysis of Optimal Operation of Petlyuk Distillation. Ind. Eng. Chem. Res., 43, 3994-3999

Hernández, S., Jiménez, A. (1996) Design of Optimal Thermally Coupled Distillation Systems Using a Dynamic Model. Trans. Inst. Chem. Eng., 74, 357-362

Hernández, S., Jiménez, A. (1999) Design of Energy-Efficient Petlyuk Systems. Comput. Chem. Eng., 23, 1005-1010


Kovach, J. W., Seider, W. D. (1987) Heterogeneous Azeotropic Distillation: Experimental and Simulation Results. AIChE J., 33, 1300-1314

Kaibel, G. (1987) Distillation Columns with Vertical Partitions. Chem. Eng. Technol., 10, 92-98

Luyben, W. L. (2006) Control of a Multinuit Heterogeneous Azeotropic Distillation Process. AIChE J., 52, 623-637

Moore, C. F. (1992) Selection of Controlled and Manipulated Variables. In: Luben, W. L. (Ed.), Practical Distillation Control. Van Nostrand Reinhold, New York

Pham, H. N., Ryan, P. J., Doherty, M. F. (1989) Design and Minimum Reflux for Heterogeneous Azeotropic Distillations Column. AIChE J., 35, 1585-1591

Pham, H. N., Doherty, M. F. (1990) Design and Synthesis of Heterogeneous Azeotropic Distillations-II. Residue Curve Maps. Chem. Eng. Sci., 45, 1837-1843

Rovaglio, M., Faravelli, T., Biardi, G., Gaffuri, P., Soccol, S. (1992) Precise Composition Control of Heterogeneous Azeotropic Distillation Towers. Comput. Chem. Eng., 16, S181-S188

Rovaglio, M., Faravelli, T., Biardi, G., Gaffuri, P., Soccol, S. (1993) The Key Role of Entrainer Inventory for Operation and Control of Heterogeneous Azeotropic Distillation Towers. Comput. Chem. Eng., 17, 535-547

Segovia-Hernández, J. G., Hernández, S., Rico-Ramírez, V., Jiménez, A. (2004) A Comparison of the Feedback Control Behavior Between Thermally Coupled and Conventional Distillation Schemes. Comput. Chem. Eng., 28, 811-819

Serra, M., Espuña, A., Puigjaner, L. (1999) Control and Optimization of the Divided Wall Column. Chem. Eng. Proc., 38, 549-562

Serra, M., Espuña, A., Puigjaner, L. (2003) Controllability of Different Multicomponent Distillation Arrangements. Ind. Eng. Chem. Res., 42, 1773-1782

Tedder, D. W., Rudd, D. F. (1978) Parametric Studies in Industial Distillation: Part 1. Design Comparisons. AIChE J., 24, 303-315

Wang, C. J., Wong, D. S. H., Chien, I. L., Shin, R. F., Liu, W. T., Tsai, C. S. (1998) Critical Reflux, Parametric Sensitivity, and Hysteresis in Azeotropic Distillation of Isopropyl Alcohol + Water + Cyclohexane. Ind. Eng. Chem. Res., 37, 2835-2843

Wang, S. J., Wong, D. S. H., Lee, E. K. (2003) Control of a Reactive Distillation Column in the Kinetic Regime for the Synthesis of n-Butyl Acetate. Ind. Eng. Chem. Res., 42, 5182-5194

Wang, S. J., Wong, D. S. H. (2006) Control of Reactive Distillation Production of High-Purity Isopropanol. J. Process Control, 16, 385-394
Wang, S. J., Wong, D. S. H. (2006) Controllability and Energy Efficiency of a High-Purity Divided Wall Column. Chem. Eng. Sci., in revise

Widagdo, S., Seider, W. D., Sebastian, D. H. (1992) Dynamic Analysis of Heterogeneous Azeotropic Distillation. AIChE J., 38, 1229-1242

Widagdo, S., Seider, W. D. (1996) Azeotropic Distillation. AIChE J., 42, 96-130
(此全文未開放授權)
封面
摘要
謝誌
目錄
第一章
第二章
第三章
第四章
第五章
附錄
參考文獻
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *