帳號:guest(18.221.227.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐子銘
作者(外文):Tzu-Min Ou
論文名稱(中文):垂直結構之有機薄膜電晶體: 設計與製作
論文名稱(外文):The Design and Fabrication of the Organic Thin-Film Transistors with Vertical Architecture
指導教授(中文):吳孟奇
指導教授(外文):Meng-Chyi Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:935049
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:60
中文關鍵詞:有機薄膜電晶體垂直熱載子蕭特基二極體靜態感應電晶體小分子有機半導體
外文關鍵詞:organicthin film transistorverticalhot-carrierSchottky diodestatic induction transistorSITHCTOTFTOFETsmall moleculeorganic semiconductor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
在此論文中,我們將研究垂直式有機薄膜電晶體。在研究過程中所有的元件都是經由影光罩(shadow mask),以及藉由熱蒸鍍的方式來製作。我們的研究由垂直式有機電晶體中最基本的組成:蕭特基二極體開始。從厚度不同的蕭特基二極體的電流-電壓曲線,我們發現越厚的有機薄膜會阻礙電流的注入,雖然它也會使得二極體的崩潰電壓提高。再經由變溫的電流電壓曲線以及阿瑞尼士圖,我們確認了在有機材料中載子的熱促進(thermal-assisted)躍遷(hopping)傳輸機制,以及與厚度相關的陷阱能階。這可以解釋厚度所造成的低注入是由於陷阱所造成的。我們最初的垂直式有機電晶體是靜態感應電晶體(static induction transistor),它可以提供電流的開/關比為4,以及毫安培等級的電流輸出。在靜態感應電晶體中最為關鍵的部分為其閘極的形狀,但是由於影光罩本身最小線寬的限制,使得靜態感應電晶體的特性難以更進一步的提升。因此我們採用了另一種更為可行的結構,也就是熱載子三極體(hot-carrier triode)。這種三極體藉由改變其輸入的基極電流大小,可以得到相當近似於電晶體的電流輸出特性。包含了理想的線性區以及飽和區,以及電流增益值為2.38。藉由基本的電性量測我們進一部的探討其操作的原理以及載子的傳輸機制。此種結構不需要精細複雜的光罩即可製作,且具有良好特性,故為相當適合垂直式電晶體所採用的一種結構。
In this thesis, we investigate the vertical-type organic thin film transistors (OTFTs). All the devices are fabricated through shadow masks by thermal evaporation. From the current-voltage (I-V) characteristics of thickness-varying Schottky diodes, we conclude that the thick organic layer is unfavorable to current injection though it also provides higher breakdown voltage. We confirm that the thermal-assisted carrier transport mechanism and the thickness-dependent trapping energy levels from the temperature-varying I-V characteristics and Arrhenius plots. The first vertical-type transistor we fabricate is static induction transistor, and it provides a current on/off ratio of 4 and a high current output in the order of milliampere. But the limitation of the shadow mask prohibits us from enhancing its performance. Therefore, we pursue our investigation with a promising vertical-type structure, hot-carrier triode. The devices show transistor-like characteristics which output current can be modulated by demanding different input currents on their thin metal base electrodes. They also exhibit a good current saturation with current gain of 2.38. The mechanism of operation is proposed and examined by the basic electrical measurements.
Chapter 1. Introduction
1.1. General overview of organic thin film transistors (OTFTs) and Motivation 1
1.2. Device fabrication method 3
1.3. Organization of this thesis 6

Chapter 2. Metal-organic junction: Schottky diodes.
2.1. Intrduction to materials 10
2.2. Experimental 11
2.3. Results and Discussions 13
2.4. Conclusion 18

Chapter 3. Organic static induction transistor (OSIT).
3.1. Operational principle 25
3.2. Experimental 26
3.3. Results and Discussions 27
3.4. Conclusion 31

Chapter 4. Organic hot-carrier triode (HCT).
4.1. Operational principle 39
4.2. Experimental 42
4.3. Results and Discussions 43
4.4. Conclusion 47

Chapter 5. Summary. 52
References. 55
1. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks”, Proc. Nat. Acad. Sci. USA, vol. 98, pp. 4835-4840, 2001.
2. G. H. Gelinck, H. A. Hutima, and D. Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors”, Nat. Mater., vol. 3, pp. 106-110, 2004.
3. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, and T. N. Jackson, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Appl. Phys. Lett., vol. 80, pp. 1088-1090, 2002.
4. Tsumura, H. Koezuka, and T. Ando, ”Macromolecular electronic device: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., vol. 49, pp. 1210-1212, 1986.
5. S. Fujimoto, K. Nakayama, and M. Yokoyama, “Fabrication of a vertical-type organic transistor with a planar metal base”, Appl. Phys. Lett., vol. 87, 133503, 2005.
6. N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors”, Science, vol. 299, pp. 1881-1884, 2003.
7. R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes, T. Riedl, H. H. Johannes, and W. Kowalsky, “Vertical channel all-organic thin-film transistors”, Appl. Phys. Lett., vol. 82, pp. 4579-4580, 2003.
8. Y. Yang, and A. J. Heeger, “A new architecture for polymer transistors”, Nature, vol. 372, pp.344-346, 1994.
9. D. X. Wang, Y.Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Kanaka, “Device Characteristics of Organic Static Induction Transistor Using Copper Phthalocyanine Films and Al Gate Electrode”, Jpn. J. Appl. Phys., vol. 38, pp. 256-259, 1999.
10. Y. Watanabe and K. Kudo, “Flexible organic static induction transistors using pentacene thin films”, Appl. Phys. Lett., vol. 87, 223505, 2005.
11. M. Samuel, C. S. Menon, and N. V. Unnikrishnan, “Electrical conduction processes in as-deposited indium phthalocyanine chloride thin films using gold and aluminium electrode combination“, J. Phys.: Condens. Matter, vol. 18, pp. 135-141, 2006.
12. A. S. Riad, M. T. Korayem, and T. G Abdel-Malik, “AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate“, Physica B, vol. 270, pp. 140-147, 1999.
13. R. D. Gould, “Structure and electrical conduction properties of phthalocyanine thin films“, Coord. Chem. Rev., vol. 156, pp. 237-274, 1996.
14. A. S. Riad, S. M. Khalil, and S. Darwish, “Effect of temperature on photoconduction and low frequency capacitance measurements on β-CuPc photovoltaic cells“, Thin Solid Films, vol. 249, pp. 219-223, 1994.
15. A. Fujii, Y. Ohmori, and K. Yoshino, “An organic infrared electroluminescent diode utilizing a phthalocyanine film“, IEEE Trans. Electron Devices, vol. 44, pp. 1204-1207, 1997.
16. K. Y. Law, “Organic photoconductive materials: Recent trends and developements“, Chem. Rev., vol. 93, pp. 449-486 (1993).
17. G. Guillaud, J. Simon, and J. P. Germain, “Metallophthalocyanines Gas sensors, resistors and field effect transistors”, Coord. Chem. Rev., vol. 178-180, pp. 1433-1484, 1998.
18. R. M. Abdel-Latif and H. Motaway, Renewable Energy Congress-V Florence, Italy, pp. 19-25, 1998.
19. F. R. Fan and L. R. Faulkner, “Photovoltaic effects of metalfree and zinc phthalocyanines. II. Properties of illuminated thin-film cells“, J. Chem Phys., vol. 69, pp. 3341-3349, 1978.
20. T. L. Anderson. G. C. Komplin, and W. J. Pietro, “Rectifying junctions in peripherally-substituted metallophthalocyanine bilayer films”, J. Phys. Chem., vol. 97, pp. 6577 -6578, 1993.
21. F. R. Fan and L. R. Faulkner, “Photovoltaic effects of metalfree and zinc phthalocyanines. I. Dark electrical properties of rectifying cells“, J. Chem. Phys., vol. 69, pp. 3334 -3340, 1978.
22. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility”, IEEE Electron Device Lett., vol. 18, pp. 87-89, 1997.
23. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors“, IEEE Trans. Electron Devices, vol. 44, pp. 1325-1331, 1997.
24. A. K. Mahapatro and S. Ghosh, “Schottky energy barrier and charge injection in metal/copper–phthalocyanine/metal structures”, Appl. Phys. Lett. vol. 80, pp. 4840-4842, 2002.
25. A. S. Riad, “Influence of dioxygen and annealing process on the transport properties of nickel phthalocyanine Schottky-barrier devices”, Physica B, vol. 270, pp. 148-156, 1999.
26. K. Kudo, T. Sumimoto, K. Hiraga, S. Kuniyoshi, and K. Tanaka, “Evaluation of Electrical Properties of Evaporated Thin Films of Metal-Free, Copper and Lead Phthalocyanines by In-Situ Field Effect Measurements”, Jpn. J. Appl. Phy., vol. 36, pp. 6994-6998, 1997.
27. M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps“, Phys. Rev., vol. 103, pp. 1648-1656, 1956.
28. K. Kudo, DX. Wang, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Schottky gate static induction transistor using copper phthalocyanine films”, Thin Solid Films, vol. 331, pp. 51-54, 1998.
29. D. X. Wang, Y.Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Kanaka, “Device Characteristic of Organic Static Induction Transistor Using Cooper Phthalocyanine Films and Al Gate Electrode”, Jpn. J. Appl. Phy., vol. 38, pp. 256-259, 1999.
30. S. Tnaka, H. Yanagisawa, M. Iizuka, M. Nakamura, and K. Kudo, “Vertical- and Lateral-Type Organic FET Using Pentacene Evaporated Films”, Electrical Engineering in Japan., vol. 149, pp. 853-857, 2004.
31. L. Ma and Y. Yang, “Unique architecture and concept for high-performance organic transistors”, Appl. Phys. Lett., vol. 85, pp. 5084-5086, 2004
32. A. K. Kumar and S. Ghosh, “Schottky energy barrier and charge injection in metal/cooper-phthalocyanine/metal structures”, Appl. Phys. Lett., vol. 80, pp. 4840-4842, 2002.
33. Y. Watanabe and K. Kudo, “Flexible organic static induction transistors using pentacene thin films”, Appl. Phys. Lett., vol. 87, 223505, 2005.
34. M. M. Atalla and R. W. Soshea, “Hot-carrier triodes with thin-film metal base”, Solid-State Electron., vol. 6, pp. 245-250, 1963.
35. S.M. Sze, Physics of Semiconductor Devices. Wiley and Sons, New York, 1969.
36. Y. C. Chao, S. L. Yang, H. F. Meng , and S. F. Horng, “Polymer hot-carrier transistor”, Appl. Phys. Lett., vol. 87, 253508, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *