帳號:guest(3.128.18.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林淑梅
作者(外文):Lin, Su-Mei
論文名稱(中文):光轉變螢光蛋白Kaede作為基因沉默實驗報導子之應用
論文名稱(外文):Application of photoconvertible fluorescent protein Kaede as an effective gene-silencing reporter
指導教授(中文):湯學成
指導教授(外文):Tang, Shiue-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9632524
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:基因沉默綠色螢光蛋白GFP螢光蛋白Kaede報導子RNA干擾光轉變小干擾RNA
外文關鍵詞:Gene silencingGFPKaedeReporterRNA interferencePhotoconversionsiRNA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1154
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
運用small interfering RNA (siRNA)進行基因沉默(gene silencing)實驗時,抑制基因表現的效率將受到許多因素的影響,包含:細胞與組織接受siRNA的程度、轉錄RNA與蛋白質的半衰期。當研究學者為治療目的而尋求適當的siRNA傳遞方式(siRNA delivery methods)時,報導子(reporter)將成為評估基因沉默實驗的有效工具。在這個研究裡,我們將證實光轉變螢光蛋白(photoconvertible fluorescent protein) Kaede可作為基因沉默實驗上有效的報導子。相較於在傳統上要等待報導子進行自然分解後才能去偵測新生蛋白質生成的速度,在這個實驗裡,我們將在進行RNA干擾(RNA interference)實驗之前,先將Kaede蛋白進行綠色轉成紅色螢光的光轉變反應來減少綠色螢光背景(green fluorescence background)強度,螢光背景的下降將有助於提升在RNA干擾下新生Kaede蛋白的偵測靈敏度。從我們的實驗當中可發現,在12小時的時間點,控制組(scramble)與實驗組(Kaede)的螢光強度相差2.1倍。相較於Kaede,以EGFP作為報導子時,其螢光強度與控制組(scramble)僅相差0.4倍。由實驗結果可證實,以光轉變螢光蛋白Kaede作為報導子時,將可成為偵測RNA干擾機制與siRNA傳遞效率的實用工具。
The efficiency of small interfering RNA (siRNA)-mediated gene silencing is highly variable. The process depends on a number of factors including the efficiency of siRNA uptake by cells/tissues as well as the half-lives of the RNA transcript and the target protein. While investigators are searching for suitable siRNA delivery methods for therapeutic purposes, reporter proteins are typical used to evaluate the result of gene silencing. In the present study, we demonstrate that the photoconvertible fluorescent protein, Kaede, can serve as an effective reporter to study gene silencing. Unlike the conventional approach of waiting for the natural turnover of reporters, we actively induced the green-to-red conversion of Kaede to erase the residual reporter activity prior to siRNA administration. The low residual background led to an increase in sensitivity of detecting the de novo synthesis of Kaede, which served as an effective indicator of gene silencing. Using this approach, we were able to initiate a significant 2.1-fold difference in fluoresce signals between the Kaede-specific and scramble siRNAs transfected cells twelve hours post administration. In comparison, only 0.4-fold difference was observed while using GFP as the reporter. Our work demonstrates a new application of photoconvertible fluorescent protein Kaede as the gene-silencing reporter, which can be a useful tool for monitoring the mechanism of RNA interference and assessment of appropriate methods for siRNA delivery.
中文摘要 2
Abstract 3
縮寫與全名對照表 5
謝誌 6
目錄 7
圖表目錄 9
第一章 文獻回顧 10
1-1基因沉默(gene silencing) 10
1-2 siRNA傳遞方式(delivery of siRNA) 13
1-3報導基因(reporter gene) 15
1-4光轉變螢光蛋白-Kaede
(photoconvertible fluorescent protein -Kaede) 20
1-5 Kaede和EGFP的比較 22
1-6提昇轉染效率藥劑:氯喹(chloroquine) 23
1-7實驗目的 25
第二章 材料與方法 26
2-1人類纖維細胞HT-1080 (human fibroblasts HT-1080) 26
2-2重組基因質體 26
2-3共同轉染(co-transfection) 29
2-4挑選含有Puromycin resistance的螢光細胞 30
2-5使用紫外光照射細胞 31
2-6細胞活性分析(cell viability assay) 33
2-7 RNA干擾 (RNA interference , RNAi) 35
2-8提昇轉染效率藥劑:氯喹(chloroquine) 38
第三章 實驗結果與討論 41
3-1單株細胞篩選 41
3-2紫外光照射細胞 41
3-3紫外光照射的時間 42
3-4 RNA干擾(RNA interference,RNAi)實驗 43
3-5提昇轉染效率藥劑:氯喹(chloroquine) 45
第四章 結論 59
第五章 未來展望 61
參考文獻 63
[1] Izant J., Weintraub H., Inhibition of thymidine kinase gene expression by antisense RNA: a molecular approach to genetic analysis. Cell (1984) 36: 1007-1015.

[2] Fire A., Xu S.Q., Montgomery M.K., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature (1998) 391: 806-811.

[3] Montgomery M.K., Xu S.Q., Fire A., RNA as a target of
double-stranded RNA-mediated genetic interference in Caenorhabditis
elegans. Proc. Natl. Acad. Sci. USA (1998) 95: 15502-15507.

[4] Ahlquist P., RNA-dependent RNA polymerases, viruses, and RNA
Silencing. Science (2002) 296: 1270-1273.

[5] Tijsterman M., Ketting R.F., Plasterk R.H.A ., The genetics of RNA silencing. Annual Review of Genetics (2002) 36: 489-519.


[6] Zamore P.D., Tuschl T., Sharp P.A., et al., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23
nucleotide intervals. Cell (2000) 101: 25-33.

[7] Bernstein E., Caudy A.A., Hammond S.M., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature
(2001) 409: 363-366.

[8] Elbashir S.M., Harborth J., Lendeckel W., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured
mammalian cells. Nature (2001) 411: 494-498.

[9] Elbashir S.M., Lendeckel W., Tuschl T., RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. (2001) 15: 188-200.


[10] Elbashir S.M., Martinez J., Patkaniowska A., et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila
melanogaster embryo lysate. Embo Journal (2001) 20: 6877-6888.

[11] Hammond S.M., Bernstein E., Beach D., et al., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature (2000) 404: 293-296.

[12] Hamilton A.J., Baulcombe, D.C., A species of small antisense RNA in posttranscriptional gene silencing in plants. Science (1999) 286: 950-952.

[13] Kadotani, N., Nakayashiki, H., Tosa, Y., et al., RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. The American Phytopathological Society (2003) 16: 769-776.

[14] Caplen N.J., Parrish S., Imani F., et al., Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA (2001) 98: 9742-9747.

[15] Li S.D., Huang L., Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Therapy (2006) 13: 1313-1319.

[16] Jana S., Chakraborty C., Nandi S., et al., RNA interference: potential therapeutic targets. Appl. Microbiol. Biotechnol. (2004) 65: 649-657.

[17] Leung P.K., Whittaker P.A., RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. (2005) 107: 222-239.

[18] Dave R.S., Pomerantz R.J., RNA interference: on the road to an alternate therapeutic strategy. Rev. Med. Virol. (2003) 13: 373-385.

[19] Li C.X., Parker A., Menocal E., et al., Delivery of RNA interference. Cell Cycle (2006) 5: 2103-2109.

[20] Jia F., Zhang Y.Z., Liu C.M., Stable inhibition of hepatitis B virus expression and replication in HepG2.2.15 cells by RNA interference based on retrovirus delivery. Journal of Biotechnology (2007) 128: 32-40.
[21] Barton G.M., Medzhitov R., Retroviral delivery of small interfering RNA into primary cells. Proc. Natl. Acad. Sci. USA (2002) 99: 14943-14945.

[22] Brummelkamp T.R., Bernards R., Agami R., Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell (2002) 2: 243-247.

[23] Rubinson D.A., Dillon C.P., Kwiatkowski A.V., et al., A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. (2003) 33: 401-406.

[24] Witting S.R., Brown M., Saxena R., et al., Helper-dependent adenovirus-mediated short hairpin RNA expression in the liver activates the interferon response. Journal of Biological Chemistry (2008) 283:
2120-2128.

[25] Kim C.H., Yoon J.S., Sohn H.J., et al., Direct vaccination with pseudotype baculovirus expressing murine telomerase induces anti-tumor immunity comparable with RNA-electroporated dendritic cells in a murine glioma model. Cancer Letters (2007) 250: 276-283.

[26] Xu D., McCarty D., Fernandes A., et al., Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Molecular Therapy (2005) 11: 523-530.

[27] Wormington W.M., stable repression of ribosomal-protein L1 synthesis in xenopus oocytes by microinjection of antisense RNA. Proc. Natl. Acad. Sci. USA (1986) 83: 8639-8643.

[28] McManus M.T., Haines B.B., Dillon C.P., et al., Small interfering RNA-mediated gene silencing in T lymphocytes. Journal of Immunology (2002) 169: 5754-5760.

[29] Tang W., Weidner D.A., Hu B.Y., et al., Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing. Plant Science (2006) 171: 375-381.

[30] Hiruki C., Kakuta H., Ge Z.M., et al., Viral genome delivery into detached and intact leaf tissues of vigna-unguiculata by RNA-coated gold particles using the improved particle gun. Proceedings of the Japan Academy Series B-physical and Biological Sciences (1992) 68: 183-186.

[31] Romoren K., Thu B.J., Bols N.C., et al., Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin. Biochim. Biophys. (2004) 1663: 127-134.

[32] Nafee N., Taetz S., Schneider M., et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine-Nanotechnology Biology And Medicine (2007) 3: 173-183.

[33] Katas H., Alpar H.O., Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal of Controlled Release (2006) 115: 216-225.

[34] Kim T.H., Kim S.I., Akaike T., et al., Synergistic effect of poly
(ethylenimine) on the transfection efficiency of galactosylated chitosan/
DNA complexes. J. Control. Release (2005) 105: 354-366.

[35] Katas H., Alpar H.O., Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release (2006) 115: 216-225.

[36]. Rozema D.B., Lewis D.L., siRNA delivery technologies for mammalian systems. Targets (2003) 2: 253-260.

[37] Felgner P.L., Barenholz Y., Behr J.P., et al. Nomenclature for synthetic gene delivery systems. Human Gene Therapy(1997) 8: 511-512.

[38] Wahlfors J., Loimas S., Pasanen T., et al., Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochemistry and Cell Biology (2001) 115: 59-65.
[39] Miller S., Kennedy D., Thomson J., et al., A rapid and sensitive reporter gene that uses green fluorescent protein expression to detect chemicals with estrogenic activity. Toxicological Sciences (2000) 55: 69-77.

[40] Wiedenmann J., Ivanchenko S., Oswald F., et al., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA (2004) 101: 15905-15910.

[41] Kadotani N., Nakayashiki H., Tosa Y., et al., RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Molecular Plant-microbe Interactions (2003) 16: 769-776.

[42] Padilla I.M.G., Golis A., Gentile A., et al., Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tissue And Organ Culture (2006) 84: 309-314.

[43] Lu J., Nozumi M., Fujii H., et al., A novel method for RNA interference in neurons using enhanced green fluorescent protein (EGFP)-transgenic rats. Neuroscience Research (2008) 61: 219-224.

[44] Blevins J.S., Revel A.T., Smith A.H., et al., Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi. Applied and Environmental Microbiology (2007) 73: 1501-1513.

[45] Alvarado M.C., Zsigmond L.M., Kovacs I., et al. Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiology Source (2004) 134: 18-27.

[46] Zhang Y., Phillips G.J., Li Q.X., et al., Imaging localized astrocyte ATP release with firefly luciferase beads attached to the cell surface. Analytical Chemistry (2008) 80: 9316-9325.

[47] Nichols E.R., Craig D.B., Single molecule assays reveal differences between in vitro and in vivo synthesized beta-galactosidase. Protein Journal (2008) 27: 376-383.

[48] Koo J., Kim Y., Kim J., et al., A GUS/Luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant and Cell Physiology (2007) 48: 1121-1131.

[49] Potrykus J., Wegrzyn G., The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene. Archives of Microbiology (2003) 180: 362-366.

[50] Muratovska A., Eccles M.R., Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. Febs Letters (2004)
558: 63-68.

[51] Howard K.A., Rahbek U.L., Liu X.D., et al., RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Molecular Therapy (2006) 14: 476-484.

[52] Lu J., Nozumi M., Fujii H., et al., A novel method for RNA interference in neurons using enhanced green fluorescent protein (EGFP)-transgenic rats. Neuroscience Research (2008) 61: 219-224.

[53] Hasuwa H., Kaseda K., Einarsdottir T., et al., Small interfering RNA and gene silencing in transgenic mice and rats. Febs Letters (2002) 532: 227-230.

[54] Takahashi Y., Nishikawa M., Kobayashi N., et al., Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: Quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases. Journal Of Controlled Release (2005) 105: 332-343.

[55] Katas H., Alpar H.O., Development and characterisation of chitosan nanoparticles for siRNA delivery. Journal Of Controlled Release (2006)
115: 216-225.

[56] Watanabe T., Umehara T., Yasui F., et al., Liver target delivery of small interfering RNA to the HCV gene by lactosylated cationic liposome. Journal Of Hepatology (2007) 47: 744-750.
[57] Katas H., Cevher E., Alpara H.O., Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. International Journal Of Pharmaceutics (2009) 369: 144-154.

[58] Spagnou S., Miller A.D., Keller M., Lipidic carriers of sirna: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry (2004) 43: 13348-13356.

[59] Ando R., Hama H., Yamamoto-Hino M., et al., An optical marker based on the UV-induced greento-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA (2002) 99: 12651-12656.

[60] Mizuno H., Mal T.K., Tong K.I., et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Molecular Cell (2003) 12: 1051-1058.

[61] Hayashi I., Mizuno H., Tong K.I., et al., Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein kaede, Journal Of Molecular Biology (2007)
372: 918-926.

[62] Ormo M., Cubitt A.B., Kallio K., et al., Crystal structure of the Aequorea victoria green fluorescent protein. Science (1996) 273: 1392-1395.

[63] Zimmer M., Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior. Chemical Reviews (2002) 102:
759-781.

[64] Heim R., Cubitt A.B., Tsien R.Y., Improved green fluorescence. Nature (1995) 373: 663-664.

[65] Patterson G.H., Knobel S.M., Sharif W.D., et al. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophysical Journal (1997) 73: 2782-2790.

[66] Most H., London I.M., Kane C.A., et al., Chloroquine for treatment of acute attacks of Vivax-Malaria. Jama-Journal of The American Medical Association (1946) 131: 963-967.

[67] Sharma V.P., Battling the malaria iceberg with chloroquine in India. Malaria Journal (2007) Volume: 6 Article Number: 105.

[68] Randrianarivelojosia M., Raveloson A., Riamanantena A.R., et al.,
Lessons learnt from the six decades of chloroquine use (1945-2005) to control malaria in Madagascar. Transactions Of The Royal Society Of Tropical Medicine And Hygiene (2009) 103: 3-10.

[69] Sullivan D.J., Gluzman I.Y., Russell D.G., et al., On the molecular mechanism of chloroquine's antimalarial action. Proc. Natl. Acad. Sci. USA (1996) 93: 11865-11870.

[70] van den Borne B.E.E.M., Landewe R.B.M., Rietveld J.H., et al.,
Chloroquine therapy in patients with recent-onset rheumatoid arthritis: The clinical response can be predicted by the low level of acute-phase reaction at baseline. Clinical Rheumatology (1999) 18: 369-372.

[71] Bezerra E.L.M., Vilar M.J.P., Neto P.B.D., et al., Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. Arthritis And Rheumatism (2005) 52: 3073-3078.

[72] Boelaert J.R., Sperber K., Piette J., The additive in vitro anti-HIV-1 effect of chloroquine, when combined with zidovudine and hydroxyurea. Biochemical Pharmacology (2001) 61: 1531-1535.

[73] Sotelo J., Briceno E., Lopez-Gonzalez M.A., Adding chloroquine to conventional treatment for glioblastoma multiforme - A randomized, double-blind, placebo-controlled trial. Annals Of Internal Medicine (2006) 144: 337-343.

[74] Luthman H., Magnusson G., High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. (1983)
11: 1295-1308.

[75] Wibo M., Poole B.,Protein degradation in cultured-cells .2. uptake of chloroquine by rat fibroblasts and inhibition of cellular protein degradation and cathepsin-b1. Journal Of Cell Biology (1974) 63: 430-440.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *