帳號:guest(18.191.132.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄒沛剛
作者(外文):Tsou, Pei-Kang
論文名稱(中文):噻吩分子狄爾斯-阿爾德反應機制之理論研究
論文名稱(外文):A Computational Study of Diels-Alder Reaction of Thienosultine
指導教授(中文):游靜惠
指導教授(外文):Yu, Chin-hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723574
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:84
中文關鍵詞:噻吩3-環丁烯碸鄰醌二烯狄爾斯-阿爾德反應鉗合反應理論計算
外文關鍵詞:thienosultinethienosulfoleneDiels-Alder ReactiontheoriticalcomputationalB3LYPcheletropic reactionsultinesulfolene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鄰醌二烯為合成領域常使用的的建構區塊,因為可藉由雙自由基電子結構產生高反應性,化學家嘗試眾多化合物來產生此類反應中間物,sultine 即為其中之一,可藉由逆環化反應產生雙自由基,但多數sultine 並不穩定而必須低溫環境下進行實驗。Thienosultine,分子21,因含有噻吩(thiophene)五元環使二氧化硫不易離去,而須藉由加熱120-180 °C控制反應進行 21 與親雙烯基的加成反應中發現異構化產物 sulfolene,22 為分子 21 的熱力學產物,此異構化反應並不可逆,且 22 不與親雙烯基進行反應。目前仍欠缺完整反應機制來解釋這些現象,因此本論文以 B3LYP/def2-TZVP 層級計算,討論可能的環化加成反應路徑。為了避免形成不穩定的 non-Kekule結構,以噻吩進行狄爾斯-阿爾德反應形成架橋構形,使二氧化硫更容易離去,並進行親雙烯基的加成,最後以逆狄爾斯-阿爾德加成恢復噻吩芳香環。此一路徑雖然使二氧化硫穩定離去,但是破壞噻吩的芳香性亦造成很高的反應能障。另一路徑為親雙烯基以類似 雙分子親合取代 ( bimolecular nucleophilic substitution, SN2)模式取代二氧化硫,而避免雙自由基中間物出現,反應並非於單一中心原子進行,而有較為複雜的反應過程。由本征反應座標計算發現此過程為非同步協同反應,親雙烯基接近過程中碳氧鍵先斷裂再斷碳硫鍵,而過渡態構形較為接近環化加成產物。然而 21、22 進行噻吩加成為擁有相同的能障,無法解釋反應性差別,過高的反應活化能亦說明反應路徑不適用。利用親雙烯基穩定噻吩的路徑能障較低,並且符合實驗結果,為較為合理的反應機制。
Thienosultine is a versatile building block in organic synthesis, for example, as a precursor for the non-Kekule structure 3,4-dimethylene thiophene. Thienosultine reacts with a dieneophile in a cycloaddition at 393 to 453 K forming the slightly more stable thienosulfolene as a by-product. The reverse reaction of thienosulfolene to thienosultine is not observed in experiments and there is no cycloaddition with dienophiles under the same reaction conditions.
In order to analyze experimental data, the reaction between ethene and thienosultine or thienosulfolene to form 4,5,6,7-tetrahydro- benzo[c]thiophene was investigated by quantum chemical computations at on the B3LYP/def2-TZVP level. Two reaction paths were examined in detail. The first pathway started with the Diels-Alder addition of ethene to the thiophene ring of the reactant followed by SO2 elimination. The addition of a second ethene molecule in a retro-Diels-Alder reaction yielded the thiophene product. The second pathway contained a single step in which the ethene molecule was added to the SO2 side of the reactant with the simultaneous elimination of a SO2 molecule.
The calculation results show that the second pathway is more likely than the first one as the barrier in the rate determining step is about 10 kcal/mol lower. Moreover, the second pathway can be used to explain the observed selectivity of the reaction which is not possible with the first one.
目錄
摘要 ............................................................ i
Abstract ............................................................ iii
目錄 ............................................................ iv
圖目錄 ............................................................ vi
表目錄 ...........................................................ix

第一章. 簡介................................................... 1
1.1 歷 史 背 景 ..................................................... 1
1.2 Sultine 之 文 獻 回 顧......................................... 9
1.3 噻 吩 Sultine 之 文 獻 回 顧 ................................. 17

第二章.計算方法理論與背景................................ 23
2.1 計 算 方 法 簡 介 .......................................... 23
2.2 密 度 泛 函 理 論 .......................................... 26
2.3 多 組 態 自 洽 場 理 論 ..................................... 30
2.4 本 徵 反 應 座 標 計 算 ..................................... 35
2.5 基 底 函 數 ................................................... 37

第 三 章 . 結 果 與 討 論 .............................................. 40
3.1 基 底 函 數 測 試 ......................................... 41
3.2 密 度 泛 函 測 試 ........................................43
3.3 Thienosultine 異 構 化 反 應 之 理 論 研 究 ...........48
3.4 Thienosultine 狄爾斯-阿爾德反應之 理 論 研 究... 55
第 四 章 . 結 論 ........................................................ 80
參 考 文 獻 ............................................................. 82
(1) Cava, M. P.; Napier, D. R. J. Am. Chem. Soc. 1957, 79, 1701.
(2) Flynn, C. R.; Michl, J. J. Am. Chem. Soc. 1974, 96, 3280.
(3) Martin, N.; Seoane, C.; Hanack, M. Org. Prep, Proc. Int. 1991, 23, 237.
(4) Roth, W. R.; Biermann, M.; Dekker, H.; Jochems, R.; Mosselman, C.;Hermann, H. Chem. Ber. 1978, 111, 3892.
(5) Roth, W. R.; Scholz, B. P. Chem. Ber. 1981, 114, 3741.
(6) Sakai, S.; Yamada, T. Phy. Chem. Chem. Phy. 2008, 10, 3861.
(7) Sakai, S. J. Phy. Chem. A 2000, 104, 11615.
(8) Segura, J. L.; Martin, N. Chem. Rev. 1999, 99, 3199.
(9) Fishwick, C. W. G. J., D. W. In The Chemistry of Quinonoid Compounds 1988, 2, 403.
(10) Winkler, J. D. Chem. Rev. 1996, 96, 167.
(11) Sustmann, R.; Tappanchai, S.; Bandmann, H. J. Am. Chem. Soc. 1996, 118,12555.
(12) Manoharan, M.; Venuvanalingam, P. J. Phy. Org. Chem. 1998, 11, 133.
(13) Chou, T. S. Rev. Heteroatom. Chem. 1993, 8, 65.
(14) Charlton, J. L.; Durst, T. Tetrahedron Lett. 1984, 25, 5287.
(15) Jung, F.; Molin, M.; Vandenel.R; Durst, T. J. Am. Chem. Soc. 1974, 96, 935.
(16) Durst, T.; Charlton, J. L.; Mount, D. B. Can. J. Chem. 1986, 64, 246.
(17) Sharma, N. K.; DeReinach-Hirtzbach, F.; Durst, T. Can. J. Chem. 1976, 54, 3012.
(18) Itami, K.; Palmgren, A.; Thorarensen, A.; Backvall, J. E. J. Org. Chem. 1998,63, 6466.
(19) Deguin, B.; Vogel, P. Tetrahedron Lett. 1993, 34, 6269.
(20) Deguin, B.; Vogel, P. J. Am. Chem. Soc. 1992, 114, 9210.
(21) Deguin, B.; Vogel, P. J. Am. Chem. Soc. 1998, 120, 13276.
(22) Roversi, E.; Scopelliti, R.; Vogel, P.; Sordo, J. A. Chem Comm. 2001, 1214.
(23) Monnat, F.; Volgel, P. HELVETICA CHIMICA ACTA 2002, 85, 712.
(24) Tang, K. C.; Lee, S. J.; Chi, S. H.; Lu, K. L.; Chen, W. C.; Yu, C. H.; Chen, I.C.; Wu, S. L.; Chen, C. C.; Liu, W. D.; Chen, L. J.; Wang, N. S.; Chung, W. S.
J. Photochem. Photobiol. A 2005, 170, 69.
(25) Liu, W. D.; Chi, C. C.; Pai, I. F.; Wu, A. T.; Chung, W. S. J. Org. Chem. 2002,67, 9267.
(26) Chung, W. S.; Lin, W. J.; Liu, W. D.; Chen, L. G. J. Chem. Soc., Chem. Commun 1995, 2537.
(27) Liu, J.-H.; Wu, A.-T.; Huang, M.-H.; Wu, C.-W.; Chung, W.-S. J. Org. Chem. 2000, 3395.
(28) Ando, K.; Kankake, M.; Suzuki, T.; Takayama, H. Tetrahedron 1995, 51, 129.
(29) Tome, A. C.; Cavaleiro, J. A. S.; Storr, R. C. Tetrahedron 1996, 52, 1723.
(30) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369.
(31) MOLPRO, v., a package of ab initio programs, H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, G. Rauhut, R. D. Amos,
A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel and G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer and M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni and T. Thorsteinsson, see http://www.molpro.net.
(32) Gaussian 03 , R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
(33) Shavitt, I. The method od configuration interaction, in Methods of electronic Structure Theory, 189.
(34) Thomas, L. H. Proc. Cambridge Phil. Soc. 1927, 23, 542.
(35) Hohenberg, P.; Kohn, W. Phy.Rev. 1964, 136, 864.
(36) Kohn, W.; Sham, L. J. Phys Rev 1965, 140, 1133. 83
(37) Slater, J. C. Quantum theory of Molecular and solid Vol. 4: the Self-Consistent Field for Molecular solids, McGraw Hill:New York 1974.
(38) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(39) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(40) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
(41) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(42) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(43) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(44) Pople, J. A. J. Chem. Phys. 1975, 62, 2921
(45) Dunning, T. H. Chem. Phys. 1989, 90, 1007.
(46) Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys 2003, 119, 12753.
(47) Markovic, D. Chem.Eur. J. 2003, 9, 4911.
(48) 楊崇佑 碩士論文, 清華大學 2005.
(49) Kotsuki, H.; Nishizawa, H.; Tokoroyama, T. Bull. Chem. Soc. Japan 1979, 52, 544.
(50) Kumamoto, K.; Fukadfa, I.; Kotsuki, H. Angew. chem. Int. Ed. 2004, 43, 2015.
(51) Nendel, M.; Tolbert, L. M.; Herring, L. E.; Islam, M. N.; Houk, K. N. J. Org. Chem 1999, 64, 976.
(52) Arjona, O.; Iradier, F.; Manas, R. M.; Plumet, J. Tetrahedron 1998, 54, 9095.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *