帳號:guest(18.222.184.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊亞璇
作者(外文):Chuang, Ya-Hsuan
論文名稱(中文):電化學阻抗式肝功能生物感測器
論文名稱(外文):Electrical Impedimetric Biosensors for Liver Function Detection
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731527
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:84
中文關鍵詞:生物感測器
外文關鍵詞:Biosensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:288
  • 評分評分:*****
  • 下載下載:52
  • 收藏收藏:0
在本研究中利用金導線陣列製作新穎之生物感測器,藉由量測肝功能重要指標-人類血清蛋白 (human serum albumin, HSA) ,期待未來整合於生物晶片中,用來即時檢測肝功能健康狀況。
在本研究中生物感測器製備方式,首先利用半導體製程製備生物感測器,其金電極間玻璃區域,以3-氨丙基三乙氧基矽烷 (3-aminopropyltriethoxysilane, APTES) 進行表面改質,使玻璃表面具有生物相容性後,依序固定上人類血清蛋白抗體 (anti-human serum albumin, AHSA) 、脫脂奶粉阻斷劑,以作為待測物人類血清蛋白 (HSA) 之接合與檢測。
在人類血清蛋白之感測與定量分析上,乃利用電化學阻抗譜 (Electrochemical Impedance Spectroscopy, EIS) ,在交流電下,直接量測接合於相鄰兩金電極間玻璃上之人類血清蛋白阻抗特性,藉由不同濃度貢獻之電容性阻抗變化量,定量分析人類血清蛋白之濃度。結果發現,當人類血清蛋白濃度越高,其貢獻的阻抗越大,且阻抗變化與人類血清蛋白濃度之對數 (log) 數值間呈線性關係;除此之外,此電化學阻抗式人類血清蛋白生物感測器,靈敏度可到達2□10-4 mg/ml。
本研究利用電化學阻抗式機制,用以定量檢測人類血清蛋白濃度,並成功證明此機制之可行性,且在感測器僅需利用單層黃光製程製作金電極陣列,並可直接製作於生物晶片上。因具備感測過程便利、易整合於生物晶片、分析結果可即時輸出、低成本等優點,對肝功能檢測上有極大應用價值。
第一章 續論 1
第二章 文獻回顧 3
2.1 生物感測器簡介 3
2.1.1 依據辨識元件 (Recognition Element) 分類生物感測器 5
2.1.2 依據傳感器 (Transducer) 分類生物感測器 8
2.2 肝功能指數量測 11
2.2.1 肝功能指數 11
2.2.2 人類血清蛋白檢測 13
第三章 實驗流程與方法 18
3.1 金陣列生物感測器製備 20
3.2 固定人類血清蛋白抗體之基板製備 22
3.2.1 3-氨基丙基三甲氧基甲矽烷 (APTES) 改質 22
3.2.2 人類血清蛋白抗體和阻斷劑固定流程 24
3.2.3 抗體和阻斷劑固定確認流程 27
3.3 接合人類血清蛋白 29
3.3.1 接合人類血清蛋白流程 29
3.3.2 人類血清蛋白接合之確認流程 29
3.4 運用電化學阻抗譜做人類血清蛋白之電性量測 31
3.5 儀器簡介 34
3.5.1 原子力電子顯微鏡 (Atomic Force Microscopy) 34
3.5.2 掃描式電子顯微鏡 (Scanning Electron Microscopy) 36
3.5.3 螢光顯微鏡 (Fluorescence Microscopy) 37
3.5.4 電性量測儀器 39
第四章 實驗結果與討論 40
4.1 利用掃描式和原子力顯微鏡觀察生物感測表面改質形貌 40
4.2 螢光抗體確認生物感測器表面改質 43
4.2.1 人類血清蛋白抗體固定和脫脂奶粉阻斷固定之確認 43
4.2.2 人類血清蛋白接合之確認 46
4.3 電性量測分析 47
4.3.1 等效電路分析 47
4.3.2 電性量測機制最佳化 51
4.3.3 電化學阻抗量測技術最佳化 54
4.3.4 量測頻率範圍分析 58
4.3.5 起始阻抗值 (ZAHSA+Blocking) 條件分析 60
4.3.6 人類血清蛋白在金電極通道間之阻抗特性 62
4.4 人類血清蛋白濃度定量分析 67
第五章 結論 74
第六章 未來展望 77
第七章 參考文獻 79
本研究產出之論文發表 84
[1] S. R. Khetani, and S. N. Bhatia, “Microscale Culture of Human Liver Cells for Drug Development”, Nat. Biotechnol., 2008, 26(1), 120-126
[2] D. C. Rockeyl, and D. M. Bissell, “Noninvasive Measures of Liver Fibrosis”, Hepatology, 2006, 43(2), S113-S120
[3] I. Moser, G. Jobst, P. Svasek, M. Varahram, and G. Urban, “Rapid Liver Enzyme Assay with Miniaturized Liquid Handling System Comprising Thin Film Biosensor Array”, Sensor Actuat. B, 1997, 44, 377-380
[4] L. C. Clark, Jr., and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Ann. NY. Acad. Sci., 1965, 102(1), 29-45
[5] J. H. T. Luong, K. B. Male, and J. D. Glennon, “Biosensor Technology: Technology Push versus Market Pull”, Biotechnol. Adv., 2008, 26, 492-500
[6] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, “Electrochemical Biosensors”, Chem. Soc. Rev., 2010, 39, 1747-1763
[7] P. Vadgama and P. W. Crump, “Biosensors: Recent Trends”, Analyst, 1992, 117, 1657-1670
[8] D. Grieshaber, R. MacKenzie1, J. Vörös1, and E. Reimhult, “Electrochemical Biosensors-Sensor Principles and Architectures”, Sensors, 2008, 8, 1400-1458
[9] M. J. Song, D. H. Yun, N. K. Min, and S. I. Hong, “Electrochemical Biosensor Array for Liver Diagnosis Using Silanization Technique on Nanoporous Silicon Electrode”, J. Biosci. Bioeng., 2007, 103(1), 32-37
[10] Y. C. Lu, Y. S. Chuang, Y. Y. Chen, A. C. Shu, H. Y. Hsu, H. Y. Chang, and T. R. Yew, “Bacteria Detection Utilizing Electrical Conductivity”, Biosens. Bioelectron., 2008, 23, 1856-1861
[11] R. H. Gattett and C. M. Grisham, “Biochemistry”, 2nd. Ed, Saunders college publishing, Fig. 7.31, 1995
[12] L. D. Mello and L. T. Kubota, “Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries”, Food Chem., 2002, 77, 237-256
[13] S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi, “Crystal Structure for Human Serum Albumin at 2.5 a Resolution”, Protein Eng., 1999, 12(6), 439-446
[14] K. H. Ulrich, V. T. G. Chuang, and M. Otagiri, “Practical Aspects of the Ligand-Binding and Enzymatic Properties of Human Serum Albumin”, Biol. Pharm. Bull., 2002, 25(6), 695-704
[15] S. Curry, H. Mandelkow, P. Brick, and N. Franks, “Crystal Structure of Human Serum Albumin Complexed with Fatty Acid Reveals an Asymmetric Distribution of Binding Sites”, Nat. Struct. Biol., 1998, 5(9), 827-835
[16] C. E. Ha, J. S. Ha, A. G. Theriault, and N. V. Bhagavan, “Effects of Statins on the Secretion of Human Serum Albumin in Cultured HepG2 Cells”, J. Biomed. Sci., 2009, 16(32):1-10
[17] P. Angenendt, “Progress in Protein and Antibody Microarray Technology”, Drug Discov. Today, 2005, 10(7), 503-511
[18] W. P. Blackstock and M. P. Weir, “Proteomics: Quantitative and Physical Mapping of Cellular Proteins”, Trends Biotechnol., 1999, 17, 121-127
[19] 鍾楊聰,分子生物學,偉明圖書有限公司,2003
[20] S. B. Tolani, M. Craig, R. K. DeLong, K. Ghosh, and A. K. Wanekaya, “Towards Biosensors Based on Conducting Polymer Nanowires”, Anal. Bioanal. Chem., 2009, 393, 1225–1231
[21] C. J. Huang, C. C. Lu, T. Y. Lin, T. C. Chou, and G. B. Lee, “An Electrochemical Albumin-Sensing System Utilizing Microfluidic Technology”, J. Micromech. Microeng., 2007, 17, 835–842
[22] M. C. Chuang, C. C. Liu, and M. C. Yang, “An Electrochemical Tyrosinase-Immobilized Biosensor for Albumin—Toward a Potential Total Protein Measurement”, Sensor Actuat. B, 2006, 114, 357–363
[23] K. Y. Park, Y. S. Sohn, C. K. Kim, H. S. Kim, Y. S. Bae, and S.Y. Choi, “Development of FET-Type Albumin Sensor for Diagnosing Nephritis”, Biosens. Bioelectron., 2008, 23, 1904-1907
[24] Y. H. Ahn, J. S. Lee, and Y. T. Chang, “Selective Human Serum Albumin Sensor from the Screening of a Fluorescent Rosamine Library”, J. Comb. Chem., 2008, 10, 376-380
[25] M. De, S. Rana, H. Akpinar, O. R. Miranda, R. R. Arvizo, U. H. F. Bunz, and V. M. Rotello, “Sensing of Proteins in Human Serum Using Conjugates of Nanoparticles and Green Fluorescent Protein”, Nat. Chem., 2009, 1, 461-465
[26] Bethyl Laboratories, Inc., Montgomery, TX, USA, Human Albumin ELISA Quantitation Set, http://www.bethyl.com/
[27] T. Y. Lin, C. H. Hu, and T. C. Chou, “Determination of Albumin Concentration by MIP-QCM Sensor”, Biosens. Bioelectron., 2004, 20, 75-81
[28] R. M. Pasternack, S. R. Amy, and Y. J. Chabal, “Attachment of 3-(Aminopropyl) Triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature”, Langmuir, 2008, 24, 63-71
[29] V. Sivagnanam, A. Sayah, C. Vandevyver, and M. A. M. Gijs, “Micropatterning of Protein-Functionalized Magnetic Beads on Glass Using Electrostatic Self-Assembly”, Sensor Actuat. B, 2008, 132, 361-367
[30] N. Devaraj, M. Sheykhnazari, W. S. Warren, and V.P. Bhavanandan, “Differential Binding of Pseudomonas-Aeruginosa to normal and Cystic-Fibrosis Tracheobronchial Mucins”, Glycobiology, 1994, 4(3), 307-316
[31] N. K. Maiti, S. S. Saini, R. Singh, M. S. Oberoi, and S. N. Sharma, “An Improved Dot ELISA to Detect Fowl Adenovirus Type-1 Antigen”, Comp. Immunol. Microb., 1993, 16(3), 245-250
[32] A. R. Hambley, “Electrical Engineering: Principles & Applications”, 3rd. Ed, Pearson Education International publishing, 2005
[33] S. H. Cohen and M. L. Lightbody, Atomic force microscopy/scanning tunneling microscopy, Kluwer Academic Publishers, 1999
[34] 林敬二,林宗義,材料分析,美亞出版有限公司,1994
[35] G. Ziyatdinova, J. Galandova, and J. Labuda, “Impedimetric Nanostructured Disposable DNA-based Biosensors for the Detection of Deep DNA Damage and Effect of Antioxidants”, Int. J. Electrochem. Sci., 2008, 3, 223-235
[36] F. Patolsky, M. Zayats, E. Katz, and I. Willner, “Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications: Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses”, Anal. Chem., 1999, 71, 3171-3180
[37] 胡啟章,電化學原理與方法,五南圖書出版股份有限公司,2002
[38] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, and B. Wolf, “Monitoring of Cellular Behavior Impedance Measurements on Interdigitated Electrode Structures”, Biosens. Bioelectron., 1997, 121(1), 29-41
[39] X. M. Ren and P. G. Pickup, “An Impedance Study of Electron Transport and Electron Transfer in Composite Polypyrrole+Polystyrenesulphonate Films”, J. Electroanal. Chem., 1997, 420, 251-257
[40] E. Brillas, P. L. Cabot, J. A. Garrido, M. Montilla, R. M. Rodriguez, and J. Carrasco, “Faradaic Impedance Behaviour of Oxidized and Reduced Poly (2,5-di- (-2-thienyl) -thiophene) Films”, J. Electroanal. Chem., 1997, 430, 133-140
[41] 邱碧秀,電子陶瓷材料,徐氏基金會出版,1996
[42] Abcam Inc., USA, http://www.abcam.com/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *