帳號:guest(3.131.96.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳仲威
作者(外文):Chen, Chung-Wei
論文名稱(中文):溝槽毛細平板熱管之可視化觀察與蒸發熱阻量測
論文名稱(外文):Visualization and Evaporation Resistance Measurement for Groove-Wick Evaporator of Operating Flat-Plate Heat Pipes
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733502
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:50
中文關鍵詞:熱管可視化溝槽毛細蒸發熱阻
外文關鍵詞:Heat pipeVisualizationGroove-wickEvaporation Resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:876
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本研究使用可視化之平板熱管,研究具平行溝槽毛細結構之平板
熱管蒸發區在操作中發生的現象。溝槽截面為U 形,寬0.25mm、深
0.16mm,採用的工作流體分別有水、甲醇、或丙酮。另亦包括於溝
槽蒸發區燒結不規則細銅粉的複合式毛細結構。可視化觀察指出,除
在低加熱量外,各溝槽中之水膜會分別出現一聚光性端部,各溝槽之
水膜的動態行為彼此獨立,隨加熱量增加時,水膜端部逐漸退離加熱
區,熱阻會隨此乾化過程而上升。然而,本研究之溝槽毛細之最低蒸
發熱阻量測值高於本實驗室先前對多層銅網或燒結銅粉毛細測得之
最低蒸發熱阻值,且實驗重複性不及另兩種毛細之平板熱管。當採用
複合式毛細結構時,熱管操作性能較溝槽毛細結構時穩定,且具較高
之最大加熱量。此外,在三種不同工作流體下均未觀察到核沸騰現象。
摘要...................................................................................I
圖表目錄......................................................................................IV
第一章 緒論
1.1 研究背景.............................................................................................1
1.2 熱管的結構.........................................................................................1
1.3原理與文獻回顧
1.3.1 熱管之工作原理..........................................................................2
1.3.2 溝槽毛細蒸發現象....................................................................11
1.3.3 複合式溝槽毛細........................................................................15
1.4 研究動機與目的...............................................................................16
第二章 實驗方法
2.1實驗架構與配置.................................................................................18
2.2實驗儀器.............................................................................................21
2.3實驗步驟
2.3.1 前置作業....................................................................................23
2.3.2 注水量之選擇............................................................................24
2.3.3 實驗流程................................................................................25
2.4 實驗數據處理...................................................................................25
第三章 結果與討論
3.1 溝槽毛細之蒸發區觀察...................................................................28
3.2 溝槽毛細操作中之蒸發熱阻量測與觀察
3.2.1 選用水為工作流體....................................................................32
3.2.2 選用甲醇、丙酮為工作流體......................................................38
3.3 溝槽燒結粉末毛細之操作中熱阻量測
3.3.1 選用水為工作流體....................................................................41
3.3.2 選用甲醇、丙酮為工作流體......................................................42
3.4 溝槽毛細之冷凝區觀察...................................................................43
第四章 結論...................................................................................45
參考文獻.........................................................................47
[1] G.P. Peterson, An Introduction to Heat Pipes, Modeling, Testing, and Applications, Wiley, 1994.
[2] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill,1976.
[3] R. Hopkins, A. Faghri, D. Khrustalev, Flat Miniature Heat Pipes With Micro Capillary Grooves, J. Heat Transfer 121 (1999), 102-109
[4] K. H. Do, S. J. Kim, S. V. Garimella, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick, Int. J. Heat Mass Transfer 51 (2008) 4637–4650
[5] S. J. Kim, J. K. Seo, K. H. Do,Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051 - 2063
[6] S. Anand, S. De, S. Dasgupta, Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves, Int. J. Heat Mass Transfer 45 (2002) 1535–1543
[7] Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Experimental Thermal and Fluid Science 34 (2010) 190–196.
[8] S.-W. Chen, J.-C. Hsieh, C.-T. Chou, H.-H. Lin, S.-C. Shen, M.-J. Tsai, Experimental investigation and visualization on capillary and boiling limits of micro-grooves made by different processes, Sensors and Actuators A 139 (2007) 78–87.
[9] J.-H. Liou , C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
[10] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
[11] S. Lips, F. Lefèvre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe,Int. J. Thermal Sciences 48 (2009) 1273–1278.
[12] F.W. Holm, S.P. Goplen, Heat transfer in the meniscus thin film transition region, ASME J. Heat Transfer 101 (1979) 543 - 547.
[13] G.R. Stroes, I. Catton, An experimental study of the capillary performance of triangular versus sinusoidal channels, ASME J. Heat Transfer 119 (1997) 851–853.
[14] R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603–1618.
[15] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves,Int. J. Heat Mass Transfer 50 (2007) 2905–2911.
[16] H. Wang, S.V. Garimella , J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel,Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
[17] H.K. Dhavaleswarapu, S.V. Garimella, J.Y. Murthy, Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film, ASME J. Heat Transfer 131 (2009) 061501
[18] 劉睿凱,王肇浩,張長生,白先聲,複合式熱管開發應用研究,熱管理產業通訊2008年第9期.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *