帳號:guest(18.216.171.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳聖杰
作者(外文):Chen, Sheng-Chieh
論文名稱(中文):單一細胞局部電穿孔晶片之設計、製造與測試
論文名稱(外文):The design and fabrication of a localized single cell electroporation chip
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:9735501
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:電穿孔銦錫氧化物生醫晶片
外文關鍵詞:electroporationITOBio-chip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:72
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
觀察單一分子進入細胞內之行為表現是科學家很想研究的課題,但缺乏有效之量測平台。要觀測其方式有兩種主要方式:Patch clamp微注入法與電穿孔法,利用Patch clamp微注入法可以精準從局部地方注射分子進入細胞內,但容易因為內外壓差導致細胞脹破,且無法控制單一且定量分子進入細胞內。傳統電穿孔法可以針對有效單一細胞電擊送藥,但無法從特定小區域送入,使定量的工作變為困難。有鑑於此,本實驗室發展可以控制單一分子進入細胞之觀測系統。此系統其中最重要就是單一細胞局部電穿孔平台,改良傳統電穿孔針對單一細胞整體電擊,此方式更能有效控制送藥部位並減低對細胞傷害。
本文提出新型單一細胞局部電穿孔晶片,利用1μm間距之電極陣列達到單一細胞並且在細胞特定極小區內完成電穿孔步驟。利用ITO透明導電金屬製作電極,改良傳統上金屬電極造成觀測視野遮蔽的困擾且可運用於高倍油鏡觀察。
本實驗製作出全透明局部電穿孔晶片,成功使電穿孔影響範圍侷限至單一細胞0.9μm的間距內。利用不同電擊時間降低對細胞之傷害且控制進入之螢光量,並使因電場而打開之洞能再合上。最後利用分子擴散之模型反推局部電穿孔所影響之範圍。此外,本文也針對調控ITO製程參數,電阻和均勻度已達商用之水準。
Tracking a single molecule in the cell plays a significant role in biology. Currently, there is a need for a method to deliver molecules to a cell while tracking such delivery.
We develop a new platform for tracking a single molecule delivered by localized eletropoation. In this work, a single cell is elecroporated locally at a specific membrane position on a transparent electrode chip. The whole eletroporation process was recorded by CCD camera by tracking PI dye entering the HeLa cell. Transparent ITO electrodes were employed to apply a confine E-field in a sub-micron range for localized cell electroporation.
In conventional single cell electroporation, electric field are applied to the whole cell between tow electrode. As a result many pores will be generated with different permeability and size, resulting in difficulties in tracking molecules delivered into the cell. In this paper, very localized electroporation at a specified region on a single cell surface by transparent ITO electrodes is realized, which can not only generate well-controlled nano-pores allowing for rapid recovery of the cell surface, but also provide a clear optical path for cell monitoring and molecular tracking.
In this work we demonstrate very localized electroporation to decrease the damage to the cell membrane. We can also observe resealing of the electroporation hole. We use a diffusion model to confirm localized electroportion is confined in 0.9μm region. We can control electroporation region down to 0.9μm and control the electroporation time to increase the survivability.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 目前細胞單分子送藥、觀測之技術與挑戰 2
1.3 研究動機和目標 5
第二章 文獻回顧 8
2.1 電穿孔原理 8
2.2 細胞電穿孔晶片文獻回顧 11
2.2.1 流動式晶片(Flow device) 11
2.2.2 定點式晶片 14
2.2.3 膜片箝制(Patch clamp) 18
2.3 細胞電穿孔晶片之比較 21
第三章 實驗設計 23
3.1 設計流程 23
3.2 設計理念 24
3.3 第一代局部電穿孔晶片設計 26
3.4 第二代局部電穿孔晶片設計 28
3.5 實驗系統之架設 31
3.6 實驗材料與化學藥品 32
3.6.1 所選細胞與細胞培養 32
3.6.2 實驗用化學學藥品 33
3.7 實驗儀器原理介紹 34
3.7.1 射頻濺鍍機(sputter) 34
3.7.2 電子槍蒸鍍機(e-gun) 35
3.7.3 聚焦式離子束 (Focused Ion Beam, FIB) 36
3.7.4 反應式離子蝕刻機(Reactive Ion Etcher ,RIE) 37
3.7.5 電漿輔助化學氣相沈積(PECVD) 38
3.7.6 紫外線光譜儀(UV-VIS spectrophotometer) 39
3.7.7 X-射線繞射儀(X-Ray Diffraction Metrology) 39
3.7.8 四點探針(Four-Point Probe) 40
第四章 結果與討論 41
4.1 晶片製程參數調控 41
4.1.1 ITO 電阻與均勻度 41
4.1.2 ITO蝕刻速率之調控 45
4.2 實驗對照組分析和細胞濃度控制 47
4.3 第一代電穿孔晶片測試結果 49
4.4 第二代局部電穿孔晶片測試結果與分析 52
4.4.1 局部電穿孔晶片:電穿孔時間一秒 52
4.4.2 局部電穿孔晶片:施加單一脈衝 54
4.5 細胞內擴散模型分析 57
第五章 結論 62
第六章 參考文獻 63
[1] S. Weiss, "Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy," nature structural biology, vol. 7, pp. 724-729, 2000.
[2] Sako Y and T. Uyemura, "Total Internal Reflection Fluorescence Microscopy for Single-molecule Imaging in Living Cells," Cell Structure and Function, vol. 27, pp. 357-365, 2002.
[3] Sako Y and Y. T, "Single-molecule visualization in cell biology," Imaging in cell biology, pp. ss1-ss5, 2003.
[4] E. Neumann and K. Rosenheck, "Permeability changes induced by electric impulses in vesicular membranes," The Journal of Membrane Biology, vol. 10, pp. 279-290 1972.
[5] E. Neumann, et al., "Gene transfer into mouse lyoma cells by electroporation in high electric fields," EMBO, vol. 1, pp. 841-845, 1982.
[6] C. Chen, et al., "Membrane electroporation theories:a review," Medical and Biological Engineering, vol. 44, pp. 5-14, 2006.
[7] M. R. Prausnitz, et al., "Transdermal drug delivery by electroporation," Controlled Release Society, vol. 19, pp. 232–233, 1992.
[8] M. R. Prausnitz, et al., "Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery," PNAS, vol. 90, pp. 10504–10508, 1993.
[9] M. R. Prausnitz, et al., "Transtissue molecular transport due to electroporation of skin," Electricity and Magnetism in Biology and Medicine, pp. 122–124, 1993.
[10] K. Kinosita Jr, et al., "Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope," Biophysical Journal, vol. 53, pp. 1015-1019, 1988.
[11] James C. Weaver and Y. A. Chizmadzhev, "Theory of electropoarion: A review," Bioelectrochemistry and Bioenergetics, vol. 41, pp. 135-160, 1996.
[12] S.B. Dev, et al., "Medical Applications of Electroporation," IEEE Transactions On Plasma Science, vol. 28, 2000.
[13] Sang-W Lee and Y.-C. Tai, "A micro cell lysis device," Sensors and Actuators vol. 73, pp. 74-79, 1999.
[14] Hang Lu, et al., "A microfluidic electroporation device for cell lysis," Lab on a Chip vol. 5, pp. 23-29, 2005.
[15] Junya Suehiro, et al., "Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophretic impedance measurement method," Appl.Phys, vol. 32, pp. 2814-2820, 1999.
[16] Junya Suehiro, et al., "High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization," Sensors and Actuators, vol. 96, pp. 144-151, 2003.
[17] Yihong Zhan, et al., "Electroporation of cells in microfluidic droplets," Anal. Chem, vol. 81, pp. 2027-2031, 2009.
[18] Y.Huang and B.Rubinsky, "Micro-Electroporation: Improving the Effciency and Understanding of Electrical Permeabilization of Cells.," Biomedical Microdevices, vol. 2, 1999.
[19] Y.Huang and B.Rubinsky, "Microfabricated electroporation chip for single cell membrane permeabilization.," Sensors and Actuators, vol. 104, pp. 242-249, 2001.
[20] Y.huang and B.Rubinsky, "Flow-through micro-electrporation chip for high efficency single-cell genetic manipilation " Sensors and Actuators, vol. 104, pp. 205-212, 2003.
[21] Ana Valero, et al., "Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device," Lab on a Chip, vol. 5, pp. 49-55, 2005.
[22] Ana Valero, et al., "Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device," Lab on a Chip, pp. 62-67, 2008.
[23] Jian Gao, et al., "Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip," Lab on a Chip, vol. 4, pp. 47-48, 2004.
[24] Maxine A. McClain, et al., "Microfluidic Devices for the High-Throughput Chemical Analysis of cells " Anal. Chem, vol. 75, pp. 5646-5655, 2003.
[25] Chun-Ping Jen, et al., "Site-Specific Enhancement of Gene Transfection Utilizing an Attraction Electric Field for DNA Plasmids on the Electroporation Microchip," Microelectromechanicel systems, vol. 13, 2004.
[26] Sheng-Chung Yanga, et al., "Determination of optimum gene transfection conditions using the Taguchi method for an electroporation microchip," Sensors and Actuators vol. 132, pp. 551-557 2008.
[27] J. K. Valley and M. Wu., "Parallel single-cell light-induced electroporation and dielectrophoretic manipulation," Lab on a Chip, vol. 9, pp. 1714-1720, 2009.
[28] J. A. Lundqvist, et al., "Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes," Natl. Acad. Sci. USA, vol. 96, pp. 10356–10360, 1998.
[29] K. Nolkrantz, et al., "Electroporation of Single Cells and Tissues with an Electrolyte-filled Capillary," Anal. Chem, vol. 73, pp. 4469-4477, 2001.
[30] M. Khine, et al., "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005.
[31] C. May and J. Strümpfel, "ITO coating by reactive magnetron sputtering–comparison of properties from DC and MF processing," Thin Solid Films, vol. 351, pp. 48-52, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *