帳號:guest(3.144.181.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李曉芸
作者(外文):Li, Hsiao-Yun
論文名稱(中文):Comparison of Differential Proteins in Normal and Memory-deficient Drosophila melanogaster
論文名稱(外文):正常果蠅及突變果蠅之差異性蛋白分析
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:9780528
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:果蠅記憶二維電泳
外文關鍵詞:Drosophila melanogasterMemoryEphrin receptorDek2D-DIGE
相關次數:
  • 推薦推薦:0
  • 點閱點閱:330
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
Learning and memory are not unitary processes. They are extremely complicated and dynamic. Proteins participate in memory formation are tightly regulated by various pathways, and may require protein synthesis and/or post-translational modifications. A memory-related gene (Amnesiac) in Drosophila melanogaster, encodes a neuropeptide which takes part in the memory-related protein kinase A (PKA) activity. Flies with mutated amn possess normal learning and memory behavior within the first 30 minutes of training. However, the process by which that learned can not be retained after 30 minutes of training, indicating these mutants are with deficits in middle-term memory (MTM). Using 2D-DIGE, we compared the protein expression pattern of D. melanogaster wild-type strains (2u, Canton-Special) with memory-deficient mutant (AmnX8). The results of this work provide new insights into understanding of protein expression level during memory formation. Protein spots with different expression levels between wild type and memory-deficient mutants were selected and identified. We identified 30 proteins that are differentially expressed between 2u and AmnX8 in fly brain. Protein 14-3-3 is more abundant in 2u than AmnX8 (9.26-fold). Recent studies indicate that 14-3-3 protein plays an indispensable role in the memory formation. In addition, energy-related proteins, cytoskeleton proteins and iron-related proteins are down-regulated in the mutant strain. Glycerol-3-phosphate dehydrogenase is shown to be post-translationally modified. As a result, glycerol-3-phosphate dehydrogenase plays in learning and memory formation is an alluring theme for future studies.
Eph family is the largest family of receptor tyrosine kinase, which is comprised of 16 receptors and 9 ligands. Eph receptor tyrosine kinase is a single transmembrane protein which is located on post-synaptic neurons, and its molecular weight is 121.5 kDa. Previous studies revealed that after Eph receptor tyrosine kinase interacts with NMDA receptor, calcium ions influx into postsynaptic neuron, causing alterations in synaptic plasticity. Hence, in this study we overexpressed and purified the Drosophila ephrin receptor tyrosine kinase (Dek) in E. coli and generated an antibody that recognizes the carboxyl terminal of Dek. The anti-Dek-C antibody was employed to examine the direct interaction between NMDA and Eph receptors in Drosophila brain.
Contents
Abbreviations ………………………………………………………………………………. iv

I. Comparison of Differential Proteins in Normal and Memory-deficient
Drosophila melanogaster
Chapter I. Introduction
1.1 Learning and Memory…………………………………………….…………...… 1
1.2 Memory related genes…………………………………….………………………. 2
1.3 Animal model…………………………………………….……………………...…. 3
1.4 2D-DIGE…………………………………………………..………………………… 4
1.5 Motivation…………………...……………………………………………………… 4
Chapter II. Materials and Methods
2.1 Drosophila rearing and strains………………..……………………………….… 6
2.2 Sample preparation…………………………………………………………………. 6
2.3 2D-DIGE…………….…………...…………………………………………………... 7
2.4 Isoelectric focusing and Two-dimensional electrophoresis............................... 8
2.5 Detection of dye-labelled proteins and gel image analysis…………………..…. 9
2.6 Gel staining and in-gel digestion………………………………………………..…. 9
2.7 MALDI-TOF mass spectrometry analysis and database search…………....... 10
Chapter III. Results and Discussion
3.1 Protein expression profiles of 2u and AmnX8 …………………………………… 12
3.2 Images comparisons and differential protein analysis of 2u and AmnX8……. 12
3.2.1 14-3-3 protein……………………………………………………...………. 13
3.2.2 Energy metabolic-related proteins………………………………………. 14
3.2.3 Iron-related proteins ………………………………………………………. 15
3.2.4 Cell structure and mobility proteins……………………...………………. 16
3.3 Conclusion…………………………………………………………………………. 17
Figures:
Figure 1. The structures of the cyanine dyes used in 2D-DIGE and their fluorescence emission filters………………………………………… 19
Figure 2. Briefly experiment flow-chart for Proteomes…………………......... 20
Figure 3. Head proteomes of 2u and AmnX8....….……….….….……….…… 21
Figure 4. Image superimposition of 2u and AmnX8 ………..…………….……. 22
Figure 5. The change of differential expression and statistic values between
2u and AmnX8………………...……………………………………….. 25
Tables:
Table 1. List of protein identified from 2u and AmnX8………………………….. 27
Table 2. List of identified proteins from 2u and AmnX8 grouped in functional categories........................................................................................ 28
II. Expression and Purification of Drosophila Ephrin Receptor Tyrosine Kinase
in E. coli

Chapter I. Introduction
1.1 Eph receptor tyrosine kinase family………………………………………………..… 30
1.2 Eph receptor and ephrin in synapse………………………………………………… 31
1.3 NMDA receptor……………………………………………………………………….… 31
1.4 Motivation………………………………………………………………………..……… 32
Chapter II. Materials and Methods
2.1 Construction of recombinant Dek …………………………………………………….. 33
2.1.1 Construction of Dek-N into recipient vectors…………...…………………….. 33
2.1.2 Construction of Dek-C into recipient vectors……………….........….……….. 34
2.2 Expression of constructed proteins………………………………...…………………. 34
2.2.1 Expression of Dek-N…………………………………………..………………... 34
2.2.2 Expression of Dek-C………….…………………………...……………………. 35
2.3 Purification of pGEX-6p-3-Dek-C protein………...............………………….………. 36
2.4 bis-Tris SDS-PAGE…………………………………………………………........…….. 37
2.5 Western blot…………………………………………………………………..…………. 37
2.6 Production of the anti-Dek-C antibody……………………………….………...…….. 38
Chapter III. Results and Discussion
3.1 Sequence alignment of Dek with EphB3……….…………………………………….. 39
3.2 Protein topology prediction ………………….………….…………………...………… 39
3.3 Expression test of Dek-N………………………………………………...…………….. 39
3.4 Expression test of Dek-C…………………………………………………………..…... 40
3.5 Culture medium test………………………………………………….…………….…… 41
3.6 Purification of pGEX-6P-3-Dek-C fusion protein.………………………...…….……. 41
3.7 Antibody identification and applications…………………………….………………… 42
3.8 Conclusion……………………………………………………………….....…………… 43
Figures:
Figure 1. The EphB interact with NMDA receptor in the synapses.……….... 44
Figure 2. Sequence alignments of Dek and EphB3…………………………… 45
Figure 3. Topological prediction of Dek………………………………………… 46
Figure 4. Plasmid construction of recombinant His-pET-28a(+)-Dek-N…...... 47
Figure 5. Plasmid construction of recombinant Trx-pET-32a(+)-Dek-N….…. 48
Figure 6. Plasmid construction of recombinant His-pET-28a(+)-Dek-C…...... 49
Figure 7. Plasmid construction of recombinant Trx-pET-32a(+)-Dek-C….…. 50
Figure 8. Purification of Trx-pET-32a(+)-Dek-C with cobalt column……..….. 51
Figure 9. Plasmid construction of recombinant pGEX-6P-3-Dek-C...……..... 52
Figure 10. Expression and purification of pGEX-6P-3-Dek-C…..…………… 53
Figure 11. Culture medium test for protein production enrichment………. 54
Figure 12. Purification of pGEX-6P-3-Dek-C protein…….…………………. 55
Figure 13. Identification of co-purified protein with Dek-C.…………………... 60
Figure 14. Amino acid composition of Dek-C protein…………………………. 61
Figure 15. In vivo assay of anti-Dek-C antibody..……………………………… 62
Tables:
Table 1. Vectors and host cells used for this study………...…………………. 63
Table 2. List of primers used in this study for amplified Dek proteins……...... 64
Table 3. Five culture medium components…………………………………… 65
References………………………………………………………………………………….. 66
References

1. Pavlov, I. P. (1927) Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex., London: Oxford University Press.
2. Tully, T., Bourtchouladze, R., Scott, R., and Tallman, J. (2003) Targeting the CREB pathway for memory enhancers, Nat Rev Drug Discov 2, 267-277.
3. Milner, B., Squire, L. R., and Kandel, E. R. (1998) Cognitive neuroscience and the study of memory, Neuron 20, 445-468.
4. Tully, T., Preat, T., Boynton, S. C., and Del Vecchio, M. (1994) Genetic dissection of consolidated memory in Drosophila, Cell 79, 35-47.
5. DeZazzo, J., and Tully, T. (1995) Dissection of memory formation: from behavioral pharmacology to molecular genetics, Trends Neurosci 18, 212-218.
6. Sunyer, B., Diao, W., and Lubec, G. (2008) The role of post-translational modifications for learning and memory formation, Electrophoresis 29, 2593-2602.
7. Agranoff, B. W., Davis, R. E., and Brink, J. J. (1965) Memory fixation in the goldfish, Proc Natl Acad Sci U S A 54, 788-793.
8. McGuire, S. E., Deshazer, M., and Davis, R. L. (2005) Thirty years of olfactory learning and memory research in Drosophila melanogaster, Prog Neurobiol 76, 328-347.
9. Keene, A. C., and Waddell, S. (2007) Drosophila olfactory memory: single genes to complex neural circuits, Nat Rev Neurosci 8, 341-354.
10. Quinn, W. G., Sziber, P. P., and Booker, R. (1979) The Drosophila memory mutant amnesiac, Nature 277, 212-214.
11. Waddell, S., Armstrong, J. D., Kitamoto, T., Kaiser, K., and Quinn, W. G. (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory, Cell 103, 805-813.
12. Waddell, S., and Quinn, W. G. (2001) Neurobiology. Learning how a fruit fly forgets, Science 293, 1271-1272.
13. Tully, T., and Quinn, W. G. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster, J Comp Physiol A 157, 263-277.
14. Quinn, W. G., Harris, W. A., and Benzer, S. (1974) Conditioned behavior in Drosophila melanogaster, Proc Natl Acad Sci U S A 71, 708-712.
15. Liu, W., Guo, F., Lu, B., and Guo, A. (2008) amnesiac regulates sleep onset and maintenance in Drosophila melanogaster, Biochem Biophys Res Commun 372, 798-803.
16. Moore, M. S., DeZazzo, J., Luk, A. Y., Tully, T., Singh, C. M., and Heberlein, U. (1998) Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway, Cell 93, 997-1007.
17. Motosaka, K., Koganezawa, M., Narikawa, S., Furuyama, A., Shinozaki, K., Isono, K., and Shimada, I. (2007) Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila, J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193, 279-283.
18. Tully, T. (1984) Drosophila learning: behavior and biochemistry, Behav Genet 14, 527-557.
19. McGuire, T. R. (1984) Learning in three species of Diptera: the blow fly Phormia regina, the fruit fly Drosophila melanogaster, and the house fly Musca domestica, Behav Genet 14, 479-526.
20. Stough, S., Shobe, J. L., and Carew, T. J. (2006) Intermediate-term processes in memory formation, Curr Opin Neurobiol 16, 672-678.
21. Dubnau, J., Chiang, A. S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., Smith, P., Buldoc, F., Scott, R., Certa, U., Broger, C., and Tully, T. (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory, Curr Biol 13, 286-296.
22. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins, J Biol Chem 250, 4007-4021.
23. Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R., and Postel, W. (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications, J Biochem Biophys Methods 6, 317-339.
24. Chan, H. L., Gharbi, S., Gaffney, P. R., Cramer, R., Waterfield, M. D., and Timms, J. F. (2005) Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis, Proteomics 5, 2908-2926.
25. Ericsson, C. (1999) 2-D protein extracts from Drosophila melanogaster, Methods Mol Biol 112, 35-41.
26. Gharbi, S., Gaffney, P., Yang, A., Zvelebil, M. J., Cramer, R., Waterfield, M. D., and Timms, J. F. (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system, Mol Cell Proteomics 1, 91-98.
27. Lai, T. C., Chou, H. C., Chen, Y. W., Lee, T. R., Chan, H. T., Shen, H. H., Lee, W. T., Lin, S. T., Lu, Y. C., Wu, C. L., and Chan, H. L. (2010) Secretomic and Proteomic Analysis of Potential Breast Cancer Markers by Two-Dimensional Differential Gel Electrophoresis, J Proteome Res.
28. Gorg, A., Postel, W., and Gunther, S. (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis 9, 531-546.
29. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250, Electrophoresis 9, 255-262.
30. Watanabe, M., Isobe, T., Ichimura, T., Kuwano, R., Takahashi, Y., and Kondo, H. (1993) Molecular cloning of rat cDNAs for beta and gamma subtypes of 14-3-3 protein and developmental changes in expression of their mRNAs in the nervous system, Brain Res Mol Brain Res 17, 135-146.
31. Skoulakis, E. M., and Davis, R. L. (1996) Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein, Neuron 17, 931-944.
32. Broadie, K., Rushton, E., Skoulakis, E. M., and Davis, R. L. (1997) Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function, Neuron 19, 391-402.
33. Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H., and Liddington, R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein, Nature 376, 191-194.
34. Hertz, L., Peng, L., and Dienel, G. A. (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis, J Cereb Blood Flow Metab 27, 219-249.
35. Hertz, L., and Kala, G. (2007) Energy metabolism in brain cells: effects of elevated ammonia concentrations, Metab Brain Dis 22, 199-218.
36. McGahan, M. C., Harned, J., Mukunnemkeril, M., Goralska, M., Fleisher, L., and Ferrell, J. B. (2005) Iron alters glutamate secretion by regulating cytosolic aconitase activity, Am J Physiol Cell Physiol 288, C1117-1124.
37. Montana, V., Ni, Y., Sunjara, V., Hua, X., and Parpura, V. (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes, J Neurosci 24, 2633-2642.
38. Nguyen, N. H., Brathe, A., and Hassel, B. (2003) Neuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase, J Neurochem 85, 831-842.
39. Kageoka, T., Satoh, C., Goriki, K., Fujita, M., Neriishi, S., Yamamura, K., Kaneko, J., and Masunari, N. (1985) Electrophoretic variants of blood proteins in Japanese. IV. Prevalence and enzymologic characteristics of glucose-6-phosphate dehydrogenase variants in Hiroshima and Nagasaki, Hum Genet 70, 101-108.
40. Wells, W. W., Xu, D. P., Washburn, M. P., Cirrito, H. K., and Olson, L. K. (2001) Polyhydroxybenzoates inhibit ascorbic acid activation of mitochondrial glycerol-3-phosphate dehydrogenase: implications for glucose metabolism and insulin secretion, J Biol Chem 276, 2404-2410.
41. Lee, D. W., Andersen, J. K., and Kaur, D. (2006) Iron dysregulation and neurodegeneration: the molecular connection, Mol Interv 6, 89-97.
42. Carlson, E. S., Tkac, I., Magid, R., O'Connor, M. B., Andrews, N. C., Schallert, T., Gunshin, H., Georgieff, M. K., and Petryk, A. (2009) Iron is essential for neuron development and memory function in mouse hippocampus, J Nutr 139, 672-679.
43. Korobova, F., and Svitkina, T. (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis, Mol Biol Cell 21, 165-176.
44. Matus, A. (2005) Growth of dendritic spines: a continuing story, Curr Opin Neurobiol 15, 67-72.
45. Cingolani, L. A., and Goda, Y. (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy, Nat Rev Neurosci 9, 344-356.
46. Fifkova, E., and Delay, R. J. (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity, J Cell Biol 95, 345-350.
47. Bliss, T. V., and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361, 31-39.
48. Kullander, K., and Klein, R. (2002) Mechanisms and functions of Eph and ephrin signalling, Nat Rev Mol Cell Biol 3, 475-486.
49. Dalva, M. B., Takasu, M. A., Lin, M. Z., Shamah, S. M., Hu, L., Gale, N. W., and Greenberg, M. E. (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation, Cell 103, 945-956.
50. Bossing, T., and Brand, A. H. (2002) Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting the Drosophila embryonic CNS, Development 129, 4205-4218.
51. Purcell, A. L., and Carew, T. J. (2003) Tyrosine kinases, synaptic plasticity and memory: insights from vertebrates and invertebrates, Trends Neurosci 26, 625-630.
52. Flanagan, J. G., and Vanderhaeghen, P. (1998) The ephrins and Eph receptors in neural development, Annu Rev Neurosci 21, 309-345.
53. Himanen, J. P., and Nikolov, D. B. (2003) Eph receptors and ephrins, Int J Biochem Cell Biol 35, 130-134.
54. Pasquale, E. B. (2005) Eph receptor signalling casts a wide net on cell behaviour, Nat Rev Mol Cell Biol 6, 462-475.
55. Himanen, J. P., and Nikolov, D. B. (2003) Eph signaling: a structural view, Trends Neurosci 26, 46-51.
56. Zhao, M. G., Toyoda, H., Lee, Y. S., Wu, L. J., Ko, S. W., Zhang, X. H., Jia, Y., Shum, F., Xu, H., Li, B. M., Kaang, B. K., and Zhuo, M. (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory, Neuron 47, 859-872.
57. Peng, S., Zhang, Y., Zhang, J., Wang, H., and Ren, B. (2010) Glutamate receptors and signal transduction in learning and memory, Mol Biol Rep.
58. Ghosh, A. (2002) Neurobiology. Learning more about NMDA receptor regulation, Science 295, 449-451.
59. Kasarda, D. D., Woodward, K. M., and Adalsteins, A. E. (1998) Resolution of High Molecular Weight Glutenin Subunits by a New SDS-PAGE System Incorporating a Neutral pH Buffer, Cereal Chem. 75, 70-71.
60. Wiltfang, J., Arold, N., and Neuhoff, V. (1991) A new multiphasic buffer system for sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins and peptides with molecular masses 100,000-1000, and their detection with picomolar sensitivity, Electrophoresis 12, 352-366.
61. Laemmli, U. K., and Favre, M. (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events, J Mol Biol 80, 575-599.
62. Weiland, J. J., Anderson, J. V., and Bigger, B. B. (2007) Inexpensive chemifluorescent detection of antibody-alkaline phosphatase conjugates on Western blots using 4-methylumbelliferyl phosphate, Anal Biochem 361, 140-142.
63. Hodson, A. W., and Skillen, A. W. (1988) Comparison of diazo-coupling, formazan, and silver staining techniques for visualizing alkaline phosphatase isoenzymes after electrophoresis in homogeneous-pore and gradient-pore polyacrylamide gels, Anal Biochem 169, 253-261.
64. Zabell, K. M., Laurence, J. S., Kinch, M. S., Knapp, D. W., and Stauffacher, C. V. (2006) Expression and purification of the intact cytoplasmic domain of the human ephrin receptor A2 tyrosine kinase in Escherichia coli, Protein Expr Purif 47, 210-216.
65. Hartl, F. U., and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein, Science 295, 1852-1858.
66. Dougan, D. A., Mogk, A., and Bukau, B. (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question, Cell Mol Life Sci 59, 1607-1616.
67. Gill, H. S., and Boron, W. F. (2006) Expression and purification of the cytoplasmic N-terminal domain of the Na/HCO3 cotransporter NBCe1-A: structural insights from a generalized approach, Protein Expr Purif 49, 228-234.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *