帳號:guest(13.59.10.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳偉鑫
作者(外文):Chen, Uei-Shin
論文名稱(中文):以真空電弧合成銅基積體元件的結構鑑定和物理特性之研究
論文名稱(外文):Structural Characterization and Physical Properties of Copper-based Integrated Device Synthesized by Vacuum Arc Discharge
指導教授(中文):施漢章
指導教授(外文):Han C. Shih
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:893524
出版年(民國):95
畢業學年度:94
語文別:英文中文
論文頁數:104
中文關鍵詞:真空電弧無電鍍過濾式陰極電弧氧化銅場發射體電子背向散射繞射
外文關鍵詞:vacuum arcelectroless platingfiltered cathodic arcCuOnanorodfield emitterEBSD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本研究主要分成三部分。(一)利用金屬氣相真空電弧佈植銅晶種層在a-TaN/Si基材上,再經由後續無電鍍銅製程沈積銅膜。(二)利用九十度過濾式陰極電弧電漿沈積銅膜。(三)結合九十度過濾式陰極電弧沈積銅膜和氣相-固相反應合成氧化銅奈米棒。
佈植銅晶種的晶粒大小和方位與佈植能量和劑量息息相關。而其大小和方位也深深影響後續無電鍍銅膜與a-TaN擴散阻障層之間的附著性及在孔洞填洞能力的表現。佈植能量30 kV,劑量1 x 1017 cm-2的銅晶種層在後續無電鍍銅膜的附著力及在0.2微米孔洞填充能力有良好的表現。
利用九十度過濾式陰極電弧電漿沈積的銅膜的晶粒取向、附著力及在0.2微米孔洞填充能力在本論文也有詳細探討;並結合後續控制溫度與氣氛的氣相-固相反應合成氧化銅奈米棒。成功的合成劑量比1:1的氧化銅雙晶奈米棒。氧化銅奈米棒經過量測具有3.94 V/μm的低起始電壓及大約3600的誘場發射常數(field-enhancement factor)。證實所合成奈米棒適合做為場發射材料。
This thesis is consisted of three parts, (1) Implantation of Cu seed layer on a-TaN/Si assembly using metal vapor vacuum arc ion implanter followed by electroless Cu plating, (2) Deposition of Cu films using 90o-bend filtered cathodic arc plasma system, and (3) Synthesis of CuO nanorods using 90o-bend filtered cathodic-arc for Cu deposition and vapor-solid reaction.
Various implantation energies and dosages affect the grain size and orientation of the implanted Cu seed layer and the corresponding adhesion strength to the diffusion barrier layer, a-TaN, and gap-filling capability. As a result, electroless-plated Cu films exhibit a higher adhesion strength to a-TaN and an excellent gap-filling capability in 0.2-μm-width via under the accelerating voltage of 30 kV with dosage of 1 x 1017 cm-2.
The orientation, adhesion strength and gap-filling capability of Cu films deposited by 90o-bend filtered cathodic arc plasma system are also discussed in this thesis. Stoichiometrically bicrystal CuO nanorods are synthesized by the combination of filtered cathodic-arc Cu deposition and vapor-solid reaction. CuO nanorods exhibit a lower turn-on field of 3.94 V/μm and a field-enhancement factor of ~3600, indicating that CuO nanorods are suitable for field emitters.
Abstract…………………………………………………………………....I
Contents…………………………………………………………………III
List of Acronyms and Abbreviations…………………………….……VII
Table Lists…………………………………………………………….... IX
Figure captions………………………………………………………......X

Chapter 1: Introduction
1-1 Cu Metallization forULSI Interconnect…………………………1
1-2 Electroless Cu Plating……………….……….………………….2
1-3 1-2-1 Overview………………………………………………….2
1-4 1-2-2 Electrolesss Cu Chemistry………………………………..3
1-5 Vacuum Arc Technique……...…………………………………..4
1-6 1-3-1 Macro-particles and Filter Design……………………….5
1-7 1-3-2 Advantages of Mevva Ion Implanter………………...…...6
1-8 Nanotechnology…….…………………………………………...6
1-9 CuO Nanorods……………...……………………………………7
1-10 Aim of the Thesis………………………………………………..8

Chapter 2: Instrumentation and Characterization
2-1 Filtered Cathodic Vacuum Arc Discharge System (FCVA)……..9
2-2 Metal Vapor Vacuum Arc (MEVVA) System………………….10
2-3 Characterization………………………………………………..13
2-3-1 Atomic Force Microscope (AFM)……………………….13
2-3-2 Field Emission Scanning Electron Microscopy (FESEM).13
2-3-3 Transmission Electron Microscopy (TEM)……………...14
2-3-4 X-ray Diffraction (XRD)………………………………...15
2-3-5 Secondary Ion Mass Spectrometer (SIMS)……………...16
2-3-6 Auger Electron Spectrometry (AES)…………………….17
2-3-7 X-ray photoelectron spectrometry (XPS)………………..17
2-3-8 Electron Field Emission Measurement…………………..18
2-3-9 Electron Back Scattered Diffraction (EBSD)……………19
2-3-10 Mechanical Pull-up Test………………………………..19

Chapter 3: Metal Vapor Vacuum Arc Implanted Copper and Catalysis of Electroless-plated Copper Film on the TaN/FSG/Si Assembly
3-1 Introduction................................................................................21
3-2 Experimental Procedures………………………………………22
3-3 Results and Discussion………………………………………...28

Chapter 4: Structure and Adhesion of the Electroless-plated Cu Film on the Self-catalyzed Cu Using Metal-plasma Ion Implanter
4-1 Introduction……………………………………………………37
4-2 Experimental Procedures……………………………………...37
4-3 Results and Discussion………………………………………..39
4-3-1 Microstructure and Surface Roughness…………………39
4-3-1.1 Cu Catalyst as-implanted……………………………..39
4-3-1.2 Electroless-plated Cu catalyzed by implanted Cu…….47
4-3-2 Adhesion Strength……………………………………….51
Chapter 5: Copper Metallization for Interconnect by 90o-bend Electromagnetic Filtered Vacuum Arc
5-1 Introduction……………………………………………………53
5-2 Experimental Procedures………………………………………54
5-3 Results and Discussion………………………………………...57
5-3-1 Average Grain Size and Orientation Characterized by EBSD…………………………………………………..57
5-3-2 Adhesion Strength of the FCVA Cu Film on the TaN Layer
…………………………………………………………..61
5-3-3 Gap-filling Capability…………………………………...66

Chapter 6: Self-Catalyzed CuO Nanorods on the Cu/TaN/Si Assembly Using Vacuum-Arc Cu Deposition via Vapor-Solid Reaction
6-1 Introduction…………………………………………………….68
6-2 Experimental Procedures……………………………………….69
6-3 Results and Discussion…………………………………………71

Chapter 7: Summary and Conclusions
7-1 Metal Vapor Vacuum Arc Implanted Copper and Catalysis of Electroless-plated Copper Film on the TaN/FSG/Si Assembly..82
7-2 Structure and Adhesion of the Electroless-plated Cu Film on the Self-catalyzed Cu Using Metal-plasma Ion Implanter…………83
7-3 Copper Metallization for Interconnect by a 90o-bend Electromagnetic Filtered Vacuum Arc…………………………84
7-4 Self-Catalyzed CuO Nanorods on the Cu/TaN/Si Assembly Using Vacuum-Arc Cu Deposition via Vapor-Solid Reaction………..84
References………………………………………………………………86
Publication List…………………………………………………….....100
Curriculum Vitae………………………………………………..……103
1. C.S. Yang, Y.H. Yu, K.M. Lee, H.J. Lee, C.K. Choi “Investigation of Low Dielectric Carbon-doped Silicon Oxide Films Prepared by PECVD Using Methyltrimethoxysilane Precursor “Thin Solid Films 506, 50-54 (2006).
2. S.B. Jung, H.H. Park “Improvement of Electrical Properties Silica Thin Films by of Surfactant-templated Mesoporous Plasma Treatment” Thin Solid Films 506, 360-363 (2006).
3. Y. Shacham-Diamandad, S. Lopatin, “Integrated Electroless Metallization for ULSI” Electrochim. Acta 44, 3639-3649 (1999).
4. X.W. Liu, J.H. Lin, W.J. Jong, H.C. Shih, “The Effect of Pressure Control on a Thermally Stable a-C:N Thin Film with Low Dielectric Constant by Electron Cyclotron Resonance-plasma” Thin Solid Films 409, 178-184 (2002).
5. S. Lakshminarayanan, J. Steigerwald, D.T. Price, M. Bourgeois, T.P. Chow, “Contact and Via Structures with Copper Interconnects Fabricate dusing Dual Damascene Technology” IEEE Electron Device Letters 15, 307-309 (1994).
6. H. Narcus, Metal Finishing 45, 64 (1947).
7. A.E. Cahill, American Electrochemical Society Proceedings 44, 130 (1957).
8. R.J. Zeblisky, J.F. McCormack, J.D. Williamson, F.W. Shneble, U.S. Patent 3095309 (1963).
9. S.Z. Chu, M. Sakairi, and H. Takahashi, “Copper Electroless Plating at Selected Areas on Aluminum with Pulsed Nd-YAG Laser” J. Electrochem. Soc. 147, 1423-1434 (2000).
10. D.T. Hsu, M Iskandar, F.G. Shi, S. Lopatin, Y. Shacham-Diamand, H.Y. Tong, B. Zhao, M. Brongo, P.K. Vasudev, “Compatibility of the Low-dielectric-constant Poly(arylether) with the Electroless Copper Deposition Solution” J. Electrochem. Soc. 146, 4565-4568 (1999).
11. M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, T. Osaka, “All-wet Fabrication Process for ULSI Interconnect Technology” Electrochimica Acta 51, 916-920 (2005).
12. S. Karmalkar, and J. Banerjee, “A Study of Immersion Processes of Activating Polished Crystalline Silicon for Autocatalytic Electroless Deposition of Palladium and Other Metals” J. Electrochem. Soc.146, 580-584 (1999).
13. Z.H. Ma, K.L. Tan, A.D. Alian, E.T. Kang, and K.G. Neoh, “Electroless Plating of Copper on Poly(tetrafluoroethylene) Films Modified by NH3 Plasma and Surface Graft Copolymerization with Aniline” J. Vac. Sci. Technol. A 19, 2471-2478 (2001).
14. A. A. Plyutto, “Acceleration of Positive Ions from the Expanding Plasma of a Vacuum Spark” (in Russian), JETP, 39, 1589–1589 (1960).
15. I. G. Brown, J. E. Galvin, and R. A. MacGill, “High Current Ion Source,” Appl. Phys. Lett. 47, 358–360 (1985).
16. I. G. Brown, “Vacuum Arc Ion Sources,” Rev. Sci. Instrum. 65, 3061–3081 (1994).
17. R.L. Boxman, P.J. Martin, D. Sanders (Eds.) “Handbook of Vacuum Science and Technology” Noyes, New York 1996.
18. K. Miernik, J. Walkowicz, “Spatial Distribution of Microdroplets Generated in the Cathode Spots of Vacuum Arcs” Surf. Coat. Technol. 125, 161 (2000).
19. I.I. Aksenov, V.E. Strel'nitskij, V.V. Vasilyev, D.Y. Zaleskij, “Efficiency of Magnetic Plasma Filters” Surf. Coat. Technol. 163, 118-127 (2003).
20. I.I. Aksenov, V.A. Belous, V.V. Vasil'ev, Y.Y. Volkov, V.E. Strel'nitskij, “A Rectilinear Plasma Filtering System for Vacuum-arc Deposition of Diamond-like Carbon Coatings” Diamond Relat. Mater. 8, 468 (1999).
21. A. Anders, R.A. MacGill, “Twist Filter for the Removal of Macroparticles from Cathodic Arc Plasmas” Surf. Coat. Technol. 133, 96-100 (2000).
22. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
23. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
24. B. Krishnamachari, J. McLean, B. Cooper, and J. Sethna “Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities” Phys. Rev. B 54, 8899–8907 (1996).
25. T. Gao, T.H. Wang “Catalytic Growth of In2O3 Nanobelts by Vapor Transport” Journal of Crystal Growth 290, 660-664 (2006).
26. P.Z. Ying, Z.F. Ni, W.J. Xiu, L.J. Jia, Y. Luo “Study on synthesis and gas sensitivity of SnO2 nanobelts” Chinese Physics Letters 23, 1026-1028 (2006).
27. J. M. Wu, H. C. Shih, and W.T. Wu, “Formation and Photoluminescence of Single-crystalline Rutile TiO2 Nanowires Synthesized by Thermal Evaporation” Nanotechnology 17, 105-109 (2006).
28. Y.F. Zhang, R.E. Russo, S.S. Mao “Femtosecond Laser Assisted Growth of ZnO Nanowires” Applied Physics Letters 87, 133115 (2005).
29. X. F. Duan Y. Huang, and C. M. Lieber, “Laser Assisted Catalytic Growth of Semiconductor Nanowires for Nanoscale Electronic Optoelectronic Device Application” Abstr. of Papers of the Am. Chem. Soc 221, 644-INOR Part 1, (2001).
30. X. F. Duan, and C. M. Lieber, “Laser-assisted Catalytic Growth of Single-crystal Compound Semiconductor Nanowires” Abstr. of Papers of the Am. Chem. Soc 219, 676-INOR Part 1, (2000).
31. W.W. Wang, Y.J. Zhu, G.F. Cheng, Y.H. Huang, “Microwave-assisted Synthesis of Cupric Oxide Nanosheets and Nanowhiskers” Materials Letters 60, 609-612 (2006).
32. Z.H. Liang, Y.J. Zhu, “Microwave-assisted Synthesis of Single-crystalline CuO Nanoleaves” Chemistry Letters 33, 1314-1315 (2004).
33. L. Cao, X.P. Qiu, J.B. Ding , H.L. Li , L.Q. Chen , “The Effects of Composition and Thermal Treatment on the Magnetic Properties of Fe100-xCox Nanowire Arrays Based on AAO Templates” Journal of Materials Science 41, 2211-2218 (2006).
34. J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, “Highly-ordered Carbon Nanotube Arrays for Electronics Applications” Appl. Phys. Lett. 75, 367-369 (1999).
35. J. Li, M. Moskovits, T.L. Haslett, “Nanoscale Electroless Metal Deposition in Aligned Carbon Nanotubes” Chemistry of Materials 10, 1963-1967 (1998).
36. N.I. Kovtyukhova, B.R. Martin, J.K.N. Mbindyo, T.E. Mallouk, M. Cabassi, T.S. Mayer, “Layer-by-layer Self-assembly Strategy for Template Synthesis of Nanoscale Devices” Materials Seience & Engineering C 19, 255-262 (2002).
37. K. Fujita, T. Noda, K.M. Kojima, H. Eisaki, S. Uchida, “Effect of Disorder Outside the CuO2 Planes on T-c of Copper Oxide Superconductors” Physical Review Letters 95, 97006 (2005).
38. T. Manako, Y. Okimoto, M. Izumi, S. Shinomori, M. Kawasaki, H. Kishida, H. Okamoto, T. Fukumura, M. Ohtani, “Orientation-control Led Epitaxy of A(2)CuO(3) (A : Sr, Ca) Films with Large Optical Nonlinearity” Appl. Phys. Lett. 79, 1754-1756 (2001).
39. P. Poizot, S. Laruelle, L. Dupont, and J.M. Tarascon, “Nano-sized Transition-metaloxides as Negative-electrode Materials for Lithium-ion Batteries” Nature (London) 407, 496-499 (2000).
40. C. Whitman, M. M. Moslehi, A. Paranjpe, L. Velo, and T. Omstead, “Ultralarge Scale Integrated Metallization and Interconnects” J. Vac. Sci. Technol. A 17, 1893-1897 (1999).
41. E. C. Cooney III, D. C. Strippe, and J. W. Korejwa, “Effects of Copper Seedlayer Deposition Method for Electroplating“ J. Vac. Sci. Technol. A 18, 1550-1554 (2000).
42. O. R. Monteiro, “Novel Metallization Technique for Filling 100-nm-wide Trenches and Vias with Very High Aspect Ratio” J. Vac. Sci. Technol. B 17, 1094-1097 (1999).
43. E. C. Cooney III, D. C. Strippe, J. W. Korejwa, A. H. Simon, and C. Uzoh, “Effects of Collimator Aspects Ratio and Deposition Temperature on Copper Sputtered Seedlayers” J. Vac. Sci. Technol. A 17, 1898-1903 (1999).
44. H.-H. Hsu, K.-H. Lin, S.-J. Lin, and J.-W. Yeh, “Electroless Copper Deposition for Ultralarge-scale Integration” J. Electrochem. Soc. 148, C47-C53 (2001).
45. S. Bhansali, D. K. Sood, and R. B. Zmood, “Selective Electroless Copper Plating on Silicon Seeded by Copper-ion Implantation” Thin Solid Films 253, 391-394 (1994).
46. J. H. Lin, T. L. Lee, W. J. Hsieh, C. C. Lin, C. S. Kou, and H. C. Shih, “Interfacial Mechanism Studies of Electroless Plated Cu Films on a-Ta : N Layers Catalyzed by PIII” J. Vac. Sci. Technol. A 20, 733-740 (2002).
47. J.-H. Lin, W.-J. Hsieh, J.-W. Hsu, X.-W. Liu, U.-S. Chen, and H. C. Shih, “Gap-filling Capability and Adhesion Strength of the Electroless-plated Copper for Submicron Interconnect Metallization” J. Vac. Sci. Technol. B 20, 561-565 (2002).
48. G. S. Chen, S. C. Huang, S. T. Chen, T. J. Yan, P. Y. Lee, J. H. Jou, and T. C. Lin, “An Optimal Quasisuperlattice Design to Further Improve Thermal Stability of Tantalum Nitride Diffusion Barriers” Appl. Phys. Lett. 76, 2895-2897 (2000).
49. H. Wang, A. Tiwari, X. Zhang, A. Kvit, and J. Narayan, “Copper Diffusion Characteristics in Single-crystal and Polycrystalline TaN” Appl. Phys. Lett. 81, 1453-1455 (2002).
50. S. Yu, T. K. S. Wong, K. Pita, X. Hu, and V. Ligatchev, “Surface Modified Silica Mesoporous Films as a Low Dielectric Constant Intermetal Dielectric” J. Appl. Phys. 92, 3338-3344 (2002).
51. E. M. Oks, I. G. Brown, M. R. Dickinson, R. A. MacGill, H. Emig, P. Spadtke, and B. H. Wolf, “Elevated Ion Charge States in Vacuum Arc Plasmas in a Magnetic-field” Appl. Phys. Lett. 67, 200-202 (1995).
52. I. G. Brown, “Vacuum-arc Ion Sources” Rev. Sci. Instrum. 65, 3061-3082 (1994).
53. S. Biehe and X. Hongwen, “Studies on MEVVA Ion Source” Rev. Sci. Instrum. 69, 816-818 (1998).
54. G. K. Muralidhar, S. Bhansali, A. Pogany, and D. K. Sood, “Electron Microscopy Studies of Ion Implanted Silicon for Seeding Electroless Copper Films” J. Appl. Phys. 83, 5709-5713 (1998).
55. A.D. Liu, H.X. Zhang, T.H. Zhang, “MEVVA Ion Source Development and Its Industrial Applications at Beijing Normal University” Surf. Coat. Technol. 193, 65-68 (2005).
56. J.S. Jeng, J.S. Chen, “Interdiffusions and Reactions in Cu/TiN/Ti/Thermal SiO2 and Cu/TiN/Ti/Hydrogen Silsesquioxane Multilayer Structures” J. Electrochem. Soc. 149, G455-G460 (2002).
57. J. Koike, M. Wada, “Self-forming Diffusion Barrier Layer in Cu-Mn Alloy Metallization” Appl. Phys. Lett. 87, 41911 (2005).
58. V. Ligatchev, T.K.S. Wong, “On Distributions of Defect States in Low-k Carbon Doped Silicon Dioxide Films in Vicinity of Fermi Level” Electrochem. Solid State Lett. 7, F89-F92 (2004).
59. A. Kumar, H. Bakhru, C. Jin, W.W. Lee, T.-M. Lu, “Metal Diffusion Barriers for Porous SiO2” Jpn. J. Appl. Phys. 87, 3567-3569 (2000).
60. G.S. Chen, S.C. Huang, “Intrinsic Properties and Barrier Behaviors of Thin Films of Sputter-deposited Single-layered and Alternately Layered Tantalum Nitrides (Ta2N/TaN)” J. Electrochem. Soc. 148, G424-G429 (2001).
61. U.S. Chen, J.H. Lin, W.J. Hsieh, P.S. Shih, K.W. Weng, D.Y. Wang, H.C. Shih, “Exploring Metal Vapor Vacuum Arc Implanted Copper to Catalyze Electroless-plated Copper Film on a TaN/FSG/Si Assembly” J. Vac. Sci. Tech. B 21, 1129-1133 (2003).
62. C.V. Thompson, “Grain-growth in Thin-films” Ann. Rev. Mater. Sci. 20, 245-268 (1990).
63. C.V. Thompson, R. Carel, “Texture Development in Polycrystalline Thin-films” J. Mater. Sci. Eng. B 32, 211-219 (1995).
64. C.V. Thompson, R. Carel, “Stress and Grain Growth in Thin Films” J. Mech. Phys. Solids 44, 657-673 (1996).
65. J.A. Floro, C.V. Thompson, R. Carel, P.D. Bristowe, “Competition Between Strain and Interface Energy During Epitaxial Grain-growth in Ag Films on Ni(001)” J. Mater. Res. 9, 2411-2424 (1994).
66. D.T.K. Kwok, P.K. Chu, M.M.M. Bilek, I.G. Brown, A. Vizir, “Ion Mean Charge State in a Biased Vacuum Arc Plasma Duct” IEEE Trans on Plasm. Sci. 28, 2194-2201 (2000).
67. P.J. Martin, A. Bendavid, H. Takikawa, “Ionized Plasma Vapor Deposition and Filtered Arc Deposition; Processes, Properties and Applications” J. Vac. Sci. Technol. A17, 2351-2359 (1999).
68. M.M.M. Bilek, P. Evans, D.R. Mckenzie, D.G. McCulloch, H. Zreiqat, C.R. Howlett, “Metal Ion Implantation Using a Filtered Cathodic Vacuum Arc” J. Appl. Phys. 87, 4198-4204 (2000).
69. I.I. Aksenov, V.A. Belous, V.G. Padalka, V.M. Khoroshikh, Sov. J. Plasma Phys. 4, 425 (1978).
70. I.I. Aksenov, V.A. Belous, V.G. Padalka, “Apparatus to Rid the Plasma of a Vacuum Arc of Macroparticles” Instr. Exp. Technol. 21, 1416 (1978).
71. I.I. Aksenov, V.A. Belous, V.G. Padalka, Sov. J. Plasma Phys. 4, 428 (1978).
72. A. Anders, S. Anders, I.G. Brown, “Transport of Vacuum-arc Plasmas through Magnetic Macroparticle Filters” Plasma Sources Sci. Technol. 4, 1-12 (1995).
73. T. Zhang, P.K. Chu, I.G. Brown, “Effects of Cathode Materials and Arc Current on Optimal Bias of a Cathodic Arc through a Magnetic Duct” Appl. Phys. Lett. 80, 3700-3702 (2002).
74. A. Anders, S. Anders, I.G. Brown, “Effect of Duct Bias on Transport of Vacuum-arc Plasmas through Curved Magnetic Filters” J. Appl. Phys. 75, 4900-4905 (1994).
75. U.S. Chen, W.J. Hsieh, H.C. Shih, Y.S. Chang, K.W. Weng, D.Y. Wang, “Nanostructure and Adhesion of Electroless-plated Cu Film on the Self-catalyzed Cu Using Metal-plasma Ion Implanter” Nucl. Instrum. Methods Phys. Res. B 237, 40-476 (2005).
76. I.G. Brown, “Vacuum-arc Ion Sources” Rev. Sci. Instrum. 65, 3061-3082 (1994).
77. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, “Direct Synthesis of Silicon Nanowires, Silica Nanospheres, and Wire-like Nanosphere Agglomerates” Appl. Phys. Lett. 76, 2346-2348 (2000).
78. Q. Gu, H. Y. Dang, J. Cao, J. H. Zhao, and S. S. Fan, “Silicon Nanowires Grown on Iron-patterned Silicon Substrates” Appl. Phys. Lett. 76, 3020-3021 (2000).
79. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires” Adv. Mater. (Weinheim, Ger.) 12, 1343-1345 (2000).
80. X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires” Adv. Mater. (Weinheim, Ger.) 12, 298-302 (2000).
81. X. F. Duan and C. M. Lieber, “Laser-assisted Catalytic Growth of Single Crystal GaN Nanowires” J. Am. Chem. Soc. 122, 188-189 (2000).
82. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Synthesis and Microstructure of Gallium Phosphide Nanowires” J. Vac. Sci. Technol. B 19, 1115-1118 (2001).
83. L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, T. C. Lin, F. S. Shiue, K. J. Chen, H. C. Cheng, and H. C. Shih, “Role of Extrinsic Atoms on the Morphology and Field Emission Properties of Carbon Nanotubes” Appl. Phys. Lett. 82, 4334-4336 (2003).
84. S. H. Lai, K. L. Chang, K. P. Huang, P. Lin, and H. C. Shih, “Electron Field Emission From Various Morphologies of Fluorinated Amorphous Carbon” Appl. Phys. Lett. 85, 6248-6250 (2004).
85. S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, “Well-aligned Carbon Nitride Nanotubes Synthesized in Anodic Alumina by Electron Cyclotron Resonance Chemical Vapor Deposition” Appl. Phys. Lett. 74, 197-199 (1999).
86. D. Almawlawi, C. Z. Liu, and M. Moskovits, “Nanowires Formed in Anodic Oxide Nanotemplates” J. Mater. Res. 9, 1014-1018 (1994).
87. D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field Emitters Based on Porous Aluminum Oxide Templates” Appl. Phys. Lett. 86, 3983-3987 (1999).
88. C.T. Hsieh, J.M. Chen, H.H. Lin, and H.C. Shih, “Synthesis of Well-ordered CuO Nanofibers by a Self-catalytic Growth Mechanism” Appl. Phys. Lett. 82, 3316-3318 (2003).
89. R. W. Hill, C. Proust, L. Taillefer, P. Fournier, and R. L. Greene, “Breakdown of Fermi-liquid Theory in a Copper-oxide Superconductor” Nature (London) 414, 711-715 (2001).
90. M. Ashida, T. Ogasawara, Y. Tokura, S. Uchida, S. Mazumdav, and M.Kuwata-Gonokai, “One-dimensional Cuprate as a Nonlinear Optical Material for Ultrafast All-optical Switching” Appl. Phys. Lett. 78, 2831-2833 (2001).
91. P. Poizot, S. Laruelle, L. Dupont, and J.M. Tarascon, “Nano-sized Transition-metaloxides as Negative-electrode Materials for Lithium-ion Batteries” Nature (London) 407, 496-499 (2000).
92. U.S. Chen and H.C. Shih, “Characterization of Copper Metallization for Interconnect by 90o-bend Electromagnetic Filtered Vacuum Arc” Nucl. Instrum. Methods Phys. Res. B 237, 477-483 (2005).
93. H. W. Lee, N. S. Lee, Y. S. Choi, and J. M. Kim, U.S. Patent No. 6,339,281 B2 (15 Jan. 2002).
94. S. Tsukimoto, M. Moriyama, and M. Murakami, “Microstructure of Amorphous Tantalum Nitride Thin Films” Thin Solid Films 460, 222-226 (2004).
95. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X-Ray Photoelectron Spectroscopy” (Perkin-Elmer, MN, 1992).
96. J. S. Suh, K. S. Jeong, I. Han, and J. S. Lee, “Study of the Field-screening Effect of Highly Ordered Carbon Nanotube Arrays” Appl. Phys. Lett. 80, 2392-2394 (2002).
97. R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173 (1928).
98. K. A. Dean and B. R. Chalamala, “Current Saturation Mechanisms in Carbon Nanotube Field Emitters” Appl. Phys. Lett. 76, 375-377 (2000).
99. W. B. Choi, U.S. Patent No. 6,440,761 B1 (27 Aug. 2002).
100. Y. C. Kim, K. H. Sohn, Y. M. Cho, and E. H. Yoo, “Vertical Alignment of Printed Carbon Nanotubes by Multiple Field Emission Cycles” Appl. Phys. Lett. 84, 5350-5352 (2004).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *