帳號:guest(18.117.183.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳茂全
作者(外文):Mao-Chuan Chen
論文名稱(中文):發展快速抽取乳酸菌染色體DNA方法:Xanthogenate-SDS 法,及在選殖Lactobacillus rhamnosus TCELL-1丙胺酸消旋酶基因的應用
論文名稱(外文):Use of the Xanthogenate-SDS to rapid isolate the genomic DNA from lactic acid bacteria and its application for cloning alr gene from Lactobacillus rhamnosus TCELL-1
指導教授(中文):林志侯
指導教授(外文):Thy-Hou Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:894261
出版年(民國):95
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:乳酸菌鼠李糖乳酸桿菌快速抽取染色體丙胺酸消旋酶丙胺酸消旋酶基因
外文關鍵詞:lactic acid bacteriaLactobacillus rhamnosus TCELL-1rapid isolationgenomic DNAalanine racemasealr geneXanthogenate SDS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:625
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
乳酸菌為革蘭氏陽性菌,細胞壁有較厚的肽聚醣,增加抽取染色體DNA的困難。傳統使用酵素法抽取乳酸菌染色體DNA,步驟繁瑣而耗時,並產生有毒有機溶劑廢棄物。本實驗發展Xanthogenate- SDS (XS)方法能夠快速抽取乳酸菌染色體DNA而不需要使用機械力或酵素。抽取的DNA能夠進行限制酶降解反應、PCR、基因選殖、含低的蛋白質含量、省時及花費低。但是以XS方法抽取Lactobacillus rhamnosus TCELL-1的染色體DNA時,產量過低;須先經過溶菌酶(終濃度10 μg/μL)反應15-30分鐘再進行XS法抽取(XSL法)後的產量才明顯提高。
以XSL法抽取Lb. rhamnosus TCELL-1染色體DNA後,對丙胺酸消旋酶基因alr進行選殖,得到843bp片段。轉譯成281個胺基酸。與其他乳桿菌胺基酸序列比對,與Lb. casei ATCC334 identity最高,達85.8 %。N端具ALR高度保留區序列AVVKANGYGH特徵,為與cofactor結合的位置。
Lactic acid bacteria, groups of Gram positive bacteria, have thick peptidoglycan layers in their cell wall, which make the process of cell wall lysis in genomic DNA isolation difficult. A novel method, XS method to isolate genomic DNA from lactobacillus is introduced, which is different from conventional isolation protocol. This method is rapid, requires no enzymatic or mechanical cell disruption, nor multiple organic solvent extractions. Isolated DNA are proven can be used in various molecular biology analysis, such as PCR, restriction enzyme digestion, and cloning. Isolation of genomic DNA from Lactobacillus rhamnosus TCELL-1 using XS method faces the low yield problem, and hence, lysozyme treatment prior to XS treatment (XSL method) is introduced.
DNA isolated from Lb. rhamnosus TCELL-1 via XSL method are used in cloning of alr gene. The partial length of this gene is 843 bp, which can be translated into ALR protein with 281 residues. Comparison of deduced amino acid sequence reveals 85.8 % identity with that of Lb. casei ATCC334. A highly conserved region in N-terminal, AVVKANGYGH, is found.
縮寫對照表1
摘要3
Abstract4
前言5
1.乳酸菌(Lactic Acid Bacteria, LAB)簡介5
2.Lactobacillus rhamnosus TCELL-18
3.傳統乳酸菌染色體DNA的抽取8
4.Xanthogenate9
5.丙氨酸消旋酶 (Alanine racemase,ALR , EC 5.1.1.1) alr 基因10
材料與方法14
結果28
1.快速抽取乳酸菌染色體DNA的方法28
2.Lactobacillus rhamnosus TCELL-1的alr基因選殖29
討論33
1.XS/XSL 方法33
2.alr基因序列與ALR36
圖表40
參考文獻68
附錄74
駱承庠(1992) 乳與乳製品工藝學。農業出版社。北京。

Alexander, F. W., Sandmeier, E., Mehata P. K. and Christen P. (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes, Regio-specific alpha, beta and gamma families. Eur. J. Biochem. 219: 953–960.

Altermann, E., Russell, W. M., Azcarate-Peril, M.A., Barrangou, R., Buck, B.L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R. and Klaenhammer, T. R. (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. U.S.A. 102 (11):3906-3912

Axelsson, L. (1998) Lactic acid bacteria: classification and physiology. In: Salminen, S., von Wright A. (eds) Lactic acid bacteria: Microbiology and functional aspects, Marcel Dekker, NewYork, pp. 1–72.

Berberich, R., Kaback, M. and Freese, E. (1968) D-Amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis. J. Biol. Chem. 243: 1006–1011.

Bolth, F. A., Crozier, R. D. and Strow, L. E. (1975)Dialkylthiocarbamates. Chem Abstract 83: 27641K.

Bottéro, J. (1983) In: Edzard D.O. (ed) Reallexikon der Assyrologie und Vorderasiati- schen Archiiologie, Vol. 6, Walter de Gruyter, Berlin, pp. 191–197.

Bron, P. A., Benchimol, M. G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., De Vos, W. M., Kleerebezem, M., Hols, P. (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 68: 5663-5670.

Carr, M. E., Holiday, R. E., and Russel, C. R. (1975) Starch xanthate- polyethylenimine reaction mechanism. J Polym Sci Polym Chem. 13: 1441-1456.

Critchley, P., Archibald, A. R. and Baddiley, J. (1962) The intracellular teichoic acid from Lactobacillus arabinosus. Biochem. J. 85: 420-431.

Delcour, J., Ferain, T., Deghorain, M., Palumbo, E. and Hols, P. (1999) The biosynthesis and functionality of the cell-wall of lactic-acid bacteria. Antonie van Leeuwenhoek 76: 159-184.

Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. and Mattick, J. S. (1991) 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008-4008.

Ferrari, E., Henner, D. J. and Yang, M. Y. (1985) Isolation of an alanine Racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technology 3: 1003–1007.

Fischer, W. (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29:233–302.

Heaton, M. P., Johnson, R. B. and Thomson, T. L. (1988) Controlled lysis of bacterial cells utilizing mutants with defective synthesis of D-alanine. Can. J. Microbiol. 34: 256–261.

Hecker, Karl H. and Kenneth H. Roux. (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. 20: 478-85.

Hols, P., Defrenne, T., Ferain, T., Derzelle, S., Delplace, B. and Delcour, J. (1997) The alanine racemase gene is essential for growth of Lactobacillus plantarum. J. Bacteriol 179: 3804–3807.

Inagaki, K., Tanizawa, K., Badet, B., Walsh, C. T., Tanaka, H. and Soda, K. (1986) Thermostable alanine racemase from Bacillus stearothermo- philus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry 25: 3268–3274.

Jhingan, A. K.(1992) A novel technology for DNA isolation. Methods in Molecular Biology 3:1-22.

Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. and De Vos,W. M.(1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem 216 (1):281-291

Labischinski, H. and Maidhof, H.(1994) Bacterial peptidoglycan: overview and evolve concepts. In:Ghuysen, J.M., R. Hakenbeck(eds) Bacterial cell wall, Elsevier Science B. V., New York, p25.

Lilley, P. E., Stamford, N. P., Vasudevan, S. G. and Dixon, N. E. (1993) The 92-min region of the Escherichia coli chromosome: location of the ubiA and alr genes. Gene 129: 9–16.

Lister, J. (1878) On lactic fermentation and its bearing on pathology. Trans Path. Soc., Lond. xxix: 425-67. In Brock,T. D.(ed) Milestones in Microbiology: 1556 to 1940, ASM Press, 1998, p58.

Łobocka, M., Hennig, J., Wild, J. and Kłopotowski, T. (1994) Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of the D-amino acid dehydrogenase and the catabolic alanine racemase. J. Bacteriol. 176: 1500–1510.

Manen, J.F., Sinitsyna, O., Aeschbach1, L.,Markov, A. V., Sinitsyn, A.(2005) A fully automatable enzymatic method for DNA extraction from plant tissues. BMC Plant Biology 5:23


Millauer, H., G. Edelmann(1975) O-alkyl thiocarbamates.Chem Abstract 83:192612.

Ntamere, A. S., Taron, D. J., and Neuhaus, F. C. (1987) Assembly of D- alanyllipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J. Bacteriol. 169:1702–1711.

Palumbo, E., Favier, C. F., Deghorain, M., Cocconcelli, P. S., Grangette, C., Mercenier, A., Vaughan, E. E. and Hols, P. (2004) Knockout of the alanine racemase gene in Lactobacillus plantarum results in septation defects and cell wall perforation. FEMS Microbiol. Lett. 233: 131-138.

Pang, K. M. and Knecht, D. A.(1997) Partial Inverse PCR: A Technique for Cloning Flanking Sequences. BioTechniques 22:1046-1048

Pasteur, L. (1857) Mémoire sur la fermentation appelée lactique. C. R. Acad. Sci. 45: 913 - 916.

Paulsen, I. T., Banerjei, L., Myers, G. S., Nelson, K. E., Seshadri, R., Read, T. D., Fouts, D. E., Eisen, J. A., Gill, S. R., Heidelberg, J. F., Tettelin, H., Dodson, R. J., Umayam, L., Brinkac, L., Beanan, M., Daugherty, S., DeBoy, R. T., Durkin, S., Kolonay, J., Madupu, R., Nelson, W., Vamathevan, J., Tran, B., Upton, J., Hansen, T., Shetty, J., Khouri, H., Utterback, T., Radune, D., Ketchum, K. A., Dougherty, B. A., and Fraser, C. M. (2003) Role of mobile DNA in the evolution of vancomycin- resistant Enterococcus faecalis. Science 299: 2071-2074.

Preston, R. A. and Douthit, H. A. (1984) Germination of Bacillus cereus spores: critical control by DL-alanine racemase. J. Gen. Microbiol. 130: 3123–3133.

Pridmore, R. D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A. C., Zwahlen, M. C., Rouvet, M., Altermann, E. and Barrangou, R. (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101: 2512–2517.

Rosso, G., Takashima, K. and Adams, E. (1969) Coenzyme content of purified Alanine racemase from Pseudomonas. Biochem. Biophys. Res.Commun 34: 134–140.

Saiki, R. K. (1990) Amplification of genomic DNA. pp. 13-20.

Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, the third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.


Tanizawa, K., Oshima, A., Schiedegger, A., Inagaki, K., Tanaka, H. and Soda, K. (1988) Thermostable alanine racemase from Bacillus stearothermophilus: DNA and protein sequence determination and secondary structure prediction. Biochemistry 27: 1311–1316.

Thompson, A., Griffin, H. and Gasson, M. J. (2002) Characterization of an alanine racemase gene from Lactobacillus reuteri. Curr. Microbiol. 44: 246-50

Tillet, D. and Neilan, B. A.(2000) Xanthogenate nulcleic acid isolation from cultured and environment cyanobacteria. J. phycol. 36: 251-258.

Tsai, Y.K., Lin, T.H. (2006) Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. J Appl Microbiol. 100: 446-59.

van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., Robert, C., Oztas, S., Mangenot, S., Couloux, A., Loux, V., Dervyn, R., Bossy, R., Bolotin, A., Batto, J.M., Walunas, T., Gibrat, J.F., Bessieres, P., Weissenbach, J., Ehrlich, S.D., Maguin, E. (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. 13: 9274-9279.

Walsh, C. T. (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J. Biol. Chem. 264: 2393-2396.

Wasserman, S. A., Walsh, C. T. and Botstein, D. (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J. Bacteriol. 153: 1439–1450.

Wei, X., Kuhn, D. N. and Narasimhan, G. (2003) Degenerate Primer Design via Clustering. Proc IEEE Comput Soc Bioinform Conf 2003: 275-283.

Wijsman, H. J. (1972) The characterization of an alanine racemase mutant of Escherichia coli. Genet. Res. 20: 269–277.

Wild, J., Hennig, J., Lobocka, M., Walczak, W. and Klopotowski, T. (1985) Identification of the dadx gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol. Gen. Genet. 198: 315-322

Williams, C. E. and.Ronald, P. C. (1994)PCR template-DNA isolated quickly from monocot and dicot leaves without tissue homogenization. Nucleic Acids Research. 22: 1917-1918

Yamashita, T., Ashiuchi, M., Ohnishi, K., Kato, S., Nagata, S. and Misono, H. (2003) Molecular characterization of alanine racemace from Bifidobacterium bifidum. J. Mol. Catal. B: Enzym. 23: 213 – 222.

Yonaha, K., Yorifuji, T., Yamamoto, T. and Soda, K. (1975) Alanine racemase of Bacillus subtilis var. atterimus. J. Ferment. Technol. 53: 579–587.
(此全文限內部瀏覽)
封面
目錄
縮寫對照表
摘要
Abstract
前言
材料與方法
結果
討論
圖表
參考文獻
附錄
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *