帳號:guest(3.129.11.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):閔俊國
論文名稱(中文):奈米介孔材料製備與應用特性研究
論文名稱(外文):Mesoporous Material Preparation and Application Research
指導教授(中文):吳泰伯
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:907535
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:77
中文關鍵詞:介孔氧化釕超高電容器聚亞醯胺奈米複合材料
外文關鍵詞:mesoporouselectrochemical capacitorsupercapacitorsba15polyimidecomposite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:177
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
Firstly, a series of composite thin films composed of mesoporous silica (SBA-15) filled in polyimide were synthesized. The effect of SBA-15 modified with functional group octytrimethoxysilane (OTMS) or 3-aminopropyl trimethoxy silane (ATS) on the mechanical and dielectric properties as well as the thermal stability of thin films were investigated. The tensile strength and elongation of the composite films containing SBA-15 modified with ATS were higher than those with OTMS and pristine SBA-15. It was found that the poly(amic acid) containing SBA-15 modified with ATS composite films prepared are thermally stable, and have maximum tensile/elongation and low Dk (2.8). The possible mechanistic route is discussed, and the results indicate that the SBA-15 modified by ATS is a good candidate for use as an additive in polyimide to reduce dielectric constant and markedly improve mechanical and thermally properties of the composite films.
Secondly, hydrous ruthenium oxide (RuOxHy) particles composed of nanocrystallites of ~5 nm in size were prepared, using hexagonal self-ordered mesoporous SiO2 (SBA-15) as a template and RuCl3 as the ruthenium precursor. The material is electrically conductive and has a highly mesoporous structure with a sharp distribution of fine pores of size around 3~4 nm. An extremely high specific capacitance of 954 F/g measured at 1mV/s was obtained from electrochemical capacitor made with the material. Rectangular shape of the cyclic voltammetry was observed even increasing the scan rate to about 100mV/s. The capacitor efficiency can be kept at a constant value of 95~98 % at a wide range of current from 10 to 300 mA. The results reveal that the finely and highly mesoporous ruthenium oxide prepared by the templating method has sufficiently high rate capability in H2SO4 media and is promising for energy storage devices such as supercapacitors.
ABSTRACT I
ACKNOWLEDGEMENT III
TABLE OF CONTENTS IV
FIGURE CAPTIONS VI
TABLE CAPTIONS VIII
CHAPTER 1 MESOPOROUS SILICA SBA-15 1
1. INTRODUCTION 1
2. FUNCTIONALIZATION OF PORE SURFACE 3
3. PROPOSE NEW APPLICATIONS 5
4 .REFERENCE 8
CHAPTER 2 FUNCTIONALIZED-SBA-15/POLYIMIDE NANOCOMPOSITE THIN FILMS WITH IMPROVED MECHANICAL PROPERTIES AND LOW DIELECTRIC CONSTANT 12
1. INTRODUCTION 12
2. EXPERIMENTAL 14
2.1 Preparation of poly(amic acid) and functionalized SBA-15 14
2.2 Coating conditions of composite films 15
2.3 Characterization 16
3. RESULTS AND DISCUSSION 18
3.1 Structure studies of functionalized SBA-15 18
3.2 Mechanical property of composite films 19
3.3 SEM of composite films 22
3.4 Thermal analysis of composite films 24
3.5 Dielectric constants of composite film containing SBA-15 modified by ATS 25
4. CONCLUSION 28
5. REFERENCES 29
CHAPTER 3 NANOCRYSTALLINE RUTHENIUM OXIDE OF FINE MESOPOROSITY PREPARED BY TEMPLATING FOR ELECTROCHEMICAL CAPACITOR APPLICATIONS 43
1. INTRODUCTION 43
2. EXPERIMENTAL 44
2.1 Preparation of nanocrystalline ruthenium oxide film electrodes 44
2.2 Measurement of electrochemical properties 46
2.3 Characterization 47
3. RESULTS AND DISCUSSION 47
3.1 Template structure 47
3.2 Nanocrystalline Ruthenium Oxide structure 48
3.3 Nanocrystalline Ruthenium Oxide of Fine Mesoporosity 49
3.4 Cyclic voltammetry and DC charge/discharge 51
3.5 Charge-transfer resistance and electronic conductivity of the templated RuOxHy 56
4. CONCLUSION 57
5. REFERENCES 59
chapter 1
[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, ibid. 359, 710 (1992).
[2] J. S. Beck et al., J. Am. Chem. Soc. 114, 10834 (1992).
[3] Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 8, 1147 (1996).
[4] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279(23):548-52 (1998).
[5] Unger, K. K. In Po rous Slica- Its Prop erties and Use as Support in Column Liquid Chromatography, Vol. 16, Elsevier: Am ster dam, 1979.
[6] Price, P. M.; Clark, J. H.; Macquarrie, D. J. J. Chem. Soc., Dal ton Trans. 2000, 101.
[7] Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53.
[8] Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556.
[9] Mercier, L.; Pinnavaia, T. J. En vi ron. Sci. Technol. 1998, 32, 2749.
[10] Beck, J. S.; Calabro, D. C.; McCullen, S. B.; Pelrine, B. P.;Schmitt, K. D.; Vartuli, J. C. In Method for Functionalizing Synthetic Mesoporous Crystalline Material, Mobil Oil Corp.: USA, 1992.
[11] Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Ma ter. 1998, 10, 467.
[12] van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bosaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
[13] Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000, 12, 1403.
[14] De Juan, F.; Ruiz-Hitzky, E. Adv. Mater. 2000, 12, 430.

chapter 2
[1] Martin SJ, Godschalx JP, Mills ME, Shaffer II EO, Townsend PH. Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Adv Mater 2000;12(23):1769-78.
[2] Kreuz JA, Edman JR. Polyimide films. Adv Mater 1998;10(15):1229-32.
[3] Vora RH, Gopala Krishnan PS, Goh SH, Chung TS. Synthesis and properties of designed low-k fluoro-copolyetherimides. Part1. Adv Funct Mater 2001;11(5):362-73.
[4] Cha HJ, Hedrick J, DiPietro RA, Blume T, Beyers R, Yoon DY. Structure and dielectric properties of thin polyimide films with nano-foam morphology. Appl Phys Lett 1996;68(14):1930-2.
[5] Hedrick JL, Hawker CK, DiPietro R, Jerome R, Charlier Y. The use of styrenic copolymers to generate polyimide nanofoams. Polymer 1995;36(25):4855-66.
[6] Narkis M, Puterman M, Boneh H, Kenig S. Rotational molding of thermosetting three-phase syntactic foams. Polym Eng Sci 1982;22(7):417-21.
[7] Tiwari A, Gupta MK, Pandey KN, Mathur GN, Nema SK. Encapsulation of air-filled poly(dimethylsiloxane) microballoons in polyimide as a polymeric lowεdielectric. Polym Int 2004;53:1744-51.
[8] Wang WC, Vora RH, Kang ET, Neoh KG, Ong CK, Chen LF. Nanoporous ultra-low-k films prepared from fluorinated polyimide with grafted poly(acrylic acid) side chain. Adv Mater 2004;16(1):54-7.
[9] Jiang LY, Leu CM, Wei KH. Layered silicates/fluorinated polyimide nanocomposites for advanced dielectric materials application. Adv Mater 2002;14(6):426-9.
[10] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998;279(23):548-52.
[11] Schüth F, Schmidt W. Microporous and mesoporous materials. Adv Eng Mater 2002;4(5):269-79.
[12] Chen-Yang YW, Chen CW, Wu YZ, Chen YC. High-performance circuit boards based on mesoporous silica filled PTFE composite materials. Electrochem Solid- State Lett 2005;8(1):F1-4.
[13] Wallach ML. Structure-property relations of polyimide films. J. Polym. Sci. 1968; A-2,6: 953-60.
[14] Volksen W, Cotts P, Yoon DY. Molecular weight dependence of mechanical properties of poly(p,p’-oxydiphenylene pyromellitimide) films. J. Polym. Sci. 1987; A-2, 25:2487-95.
[15] Ahmed S, Jones FR. A review of particulate reinforcement theories for polymer composites. J. Mater Sci 1990; 25:4933-42.
[16] Jancar J, Dainselmo A, Dibenedetto AT. The yield strength of particulate reinforced thermoplastic composites. Polym Eng Sci 1992;32:1394-99.
[17] Yen CT, Chen WC, Liaw DJ, Lu HY. Synthesis and properties of new polyimide–silica hybrid films through both intrachain and interchain bonding. Polymer 2003;44:7079- 87.
[18] Fu BX, Gelfer MY, Hsiao BS, Philips S, Viers B, Blanski R, Ruth P. Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 2003;44:1499-1506.
[19] Maxwell- Garnett JC. Colours in Metal Glasses and in. Metallic films. Phil Trans Roy Soc Series A 1904;23:385-420.
[20] Hedrick JL, Miller RD, Hawker CJ, Carter KR, Volksen W, Yoon DY, Trollsas M. Templating nanoporosity in thin-film dielectric insulators. Adv Mater 1998;10(13):1049-53.
[21] Todd M, Shi F. Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE T Compon Pack T 2003;26(3):667-72.

chapter 3
[1] C. C. Hu, Y. H. Huang, J. Electrochem. Soc., 146, 2465 (1999).
[2] C. C. Hu, K. H. Chang, Electrochim. Acta., 45, 2685 (2000).
[3] B. E. Conway, Electrochemical Supercapacitors, p. 15, Kluwer-Plenum, New York (1999).
[4] S. Sarangapani, B. V. Tilak, C. P. Chen, J. Electrochem. Soc., 143, 3791 (1996).
[5] M. Ramani, B. S. Haran, R. E. White, B. N. Popov, J. Electrochem. Soc., 148, A374 (2001).
[6] J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison, Langmuir, 15, 780 (1999).
[7] J. P. Zheng, P. J. Cygon, T. R. Jow, J. Electrochem. Soc., 142, 2699 (1995).
[8] D. A. McKeown, P. L. Hagans, L. P. L. Carette, A. E. Russell, K. E. Swider, D. R. Rolison, J. Phys. Chem. B, 103, 4825 (1999).
[9] C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 145, 4097 (1998).
[10] A. Burke, J. Power Sources, 91, 37 (2000).
[11] a) C.C. Hu, C. Y. Cheng, Electrochem. Solid-State Lett., 5, A43 (2002). b) C. C. Hu, T. W. Chou, Electrochem. Commun., 4, 105 (2002).
[12] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 70, 1480 (1997).
[13] K. E. Swider, C. I. Merzbacher, P. L. Hagans, and D. R. Rolison, Chem. Mater., 9, 1248 (1997).
[14] C. C. Hu, W. C. Chen, K. H. Chang, J. Electrochem. Soc., 151, A281 (2004).
[15] K.S.W. Singh, D.H. Everett, R.H.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985).
[16] S. Alvarez, M.C. Blanco-Lopez, A.J. Miranda-Ordieres, A.B. Fuertes, T.A. Centeno, Carbon, 43, 855 (2005).
[17] V. Subramanian, Sean C. Hall, Patricia H. Smith, B. Rambabu, Solid State Ionics, 175, 511 (2004).
[18] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 279, 548 (1998).
[19] T. R. Jow and J. P. Zheng, J. Electrochem. Soc., 145, 49 (1998).
[20] B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., p. 281, Addison-Wesley, Reading, Massachusetts (1978).
[21] S. Lowell, Joan E. Shields, Martin A. Thomas, Matthias Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore size and Density, p. 11, Kluwer Academic Publishers, Netherlands (2004).
[22] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature, 396, 152 (1998).
[23] J. P. Zheng, Electrochem. Solid State Lett., 2, 359 (1999).
[24] F. A. Posey, T. Morozumi, J. Elctrochem. Soc., 113, 176 (1966).
[25] B. E. Conway, Electrochemical Supercapacitors, p. 259, Kluwer-Plenum, New York (1999).
[26] J. P. Zheng, Y. Xin, J. Power Sources, 110, 86 (2002).
[27] B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York, 1999, p. 551-552.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *