帳號:guest(52.14.221.113)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李銘孝
作者(外文):Lee, Ming-Hsiao
論文名稱(中文):應用無網格法於含有多領域耦合、大變形及不規則形狀三維問題之分析
論文名稱(外文):Analysis of Three-dimensional Problems with Coupled Multi-physics, Large Deformatioin and Irregular-shaped Geometry by Meshless Method
指導教授(中文):陳文華
指導教授(外文):Chen, Wen-Hwa
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:907705
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:103
中文關鍵詞:無網格法幾何處理背景格點法耦合分析
外文關鍵詞:meshless methodGeometry-related treatmentbackground gridcoupled-field analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:215
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
無網格法本質上具有一明顯優於其他數值方法的特點,即其分析模型只需要節點,而不需要像有限單元法一樣須建立複雜之單元網格。單元網格之設計與產生雖耗時費力,且其形狀亦常影響解之收斂性及精確度,但在另一方面,單元網格本身卻可以提供數值分析過程中所需的與幾何相關的資訊,如單元的邊或面即定義了分析場域的邊界形狀,而且其積分點原本就位於單元當中。
相對的,只有節點資料的無網格法分析模型卻缺少這些與幾何相關的資訊,因而在數值模擬過程中,通常會遇到一些困難,尤其是對於具三維不規則分析場域或多材料之問題。本論文係採用兩種幾何方式配合本論文發展之檢查機制來解決這些難題。此檢查機制可在分析過程中用來決定所需要的空間內外及相對位置。
此外,無網格法在分析劇烈大變形問題時節點分佈常會嚴重扭曲,嚴重扭曲的節點分佈將導致程式之準確度降低甚至發散而無法得到解答,本論文另提出「均佈背景格點法」來解決。在「均佈背景格點法」的分析過程中,將應用規則的節點分佈來進行分析,如此即可避免節點分佈扭曲所衍生的難題。此方法將以一個被廣泛採用於微機電系統中的靜電驅動元件之分析作為示範。靜電驅動元件往往因電極結構的位移而造成靜電分析場域劇烈大變形的問題,此類問題至今對於各種數值方法仍是一個難題。但可透過本論文提出之「均佈背景格點法」及本論文所建議的耦合分析程序,而順利獲得解決。
數個示範案例將用來驗證上述新開發技術的有效性及優越性。
The meshless method has a distinct advantage over other methods in that it requires only nodes without an element mesh which usually induces time-consuming work and inaccuracy when the elements are distorted during the analysis process. However, the element mesh can provide some geometry information for the numerical simulation, such as, the analysis domain is defined by the element’s edges or faces and the quadrature points are all inside the elements.
Because the analysis model with only nodes for the meshless method lacks these types of geometry-related information, some difficulties are usually encountered during numerical simulations, especially in the cases with three-dimensional irregular-shaped analysis domains. To overcome these difficulties, two geometry schemes and check mechanisms are proposed. The check mechanisams can be used for determining if certain points are inside or outside the anayslis domain, when the situations are often encoutered in the analysis processes of the meshless method.
Furthermore, on the analyses of extremely large deformation problems, the distortion of the distribution of nodes degrades the accuracy of the solution. A new three-dimensional meshless scheme with a uniform background grid is proposed herein. By this scheme, no matter how large the analysis domain deforms, the uniformly distributed nodes of the background grid will be selected to do the solution that the situation of the distortion of node distribution can be avoided and the accuracy of the solution can be maintained. An application to an electrostatic-structural problems encountered in many electrostatic driven MEMS devices is performed. In the type of cases, the electrostatic analysis domain is often extremely distorted due to the deflection of the structure of the electrode. This kind of problem is difficult to deal with by almost all kinds of available numerical methods. But, with the proposed background grid scheme and an iterative coupled-field analysis procedure, the electrostatic-structural problem can be solved without difficulties.
Several demonstrative cases have been conducted to prove the effectiveness and advantages of the proposed techniques.
ABSTRACT
1 Introduction 1
1.1 Motivation 8
1.2 Literature review 10
1.3 Objective and approach 15
1.4 Outline of the dissertation 17
2 Basic theory of meshless method 18
2.1 Moving least squares interpolant 19
2.2 Weight function 26
3 Element-free Galerkin method (EFGM) 29
3.1 EFGM formulation for elasto-static problems 29
3.2 EFGM formulation for electrostatic problems 34
3.3 Numerical integration and quadrature schemes 37
3.4 Treatment for essential boundary conditions 40
4 Geometry-related treatments for meshless method 44
4.1 Define analysis domain and its boundaries 44
4.1.1 Constructive solid geometry scheme 44
4.1.2 Triangulated surface boundary scheme 46
4.2 Check mechanisms 47
4.2.1 Determine inside or outside the analysis domain 47
4.2.2 Determine sub-domain 50
4.3 Treatments of multi-materials 54
5 New meshless scheme with uniform background grid 56
5.1 Background grid scheme for large deformation problems 56
5.2 Background grid scheme for electrostatic-structural analysis : a coupled multi-physics problem 59
6 Results and discussion 61
7 Conclusions and future works 70
Reference 73
Figures 78
Atluri, S. N.; Zhu, T. (1998): A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, Vol. 22, pp. 117–127.
Atluri, S. N.; Shen. S. (2002): The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple & Less-costly Alternative to the Finite Element and Boundary Element Methods. Computational Mechanics, Vol. 3, no. 1, pp. 11-52.
Atluri, S. N. (2004) : The Meshless Method (MLPG) for Domain & BIE Discretizations. Tech Science Press.
Atluri, S. N.; Han, Z. D. ; Rajendran, A. M. (2004) : A New Implementation of the Meshless Finite Volume Method, Through the MLPG "Mixed" Approach. Computer Modeling in Engineering & Sciences, Vol. 6, no. 6, pp. 491-513.
Babuska, I.; Melenk, J. M. (1996): The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. Vol. 139, pp. 289-315.
Beissel, S.; Belytschko, T. (1996) : Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 47-49.
Belytschko, T. and Fleming, M. (1999) : Smoothing enrichment and contact in the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg. Vol. 71, pp. 173-195.
Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M., and Krysl (1996): Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. Vol. 139, pp. 3-47.
Belytschko, T.; Lu, Y.Y.; Gu, L. (1994): Element-Free Galerkin Method. International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256.
Belytschko, T.; Lu, Y. Y.; Gu, L. ; Tabbara, M. T. (1995) : Element-free Galerkin method for static and dynamic fracture. Int. J. Solids Structures, Vol. 32, pp. 2547-2570.
Belytschko, T.; Tabbara, M. (1996) : Dynamic fracture using element-free Galerkin methods. International Journal For Numerical Methods in Engineering, Vol. 39, pp. 923-938.
Chen, W. H.; Chen, C. H. (2005): On Three-Dimensional Fracture Mechanics Analysis by an Enriched Meshless Method. Computer Modeling in Engineering & Sciences, Vol. 8, no. 3, pp. 177-190.
Chen W.H.; Chi C.T.; Lee M.H. (2009): A Novel Element-Free Galerkin Method with Uniform Background Grid for Extremely Deformed Problems. Computer Modeling in Engineering & Sciences, Vol.40, no.2, pp. 175-200.
Chen, W. H.; Guo, X. M. (2001): Element Free Galerkin Method for Three-dimensional Structural Analysis. Computer Modeling in Engineering & Sciences, Vol. 2, no. 4, pp. 497-508.
Chen, Y.; Lee, J. and Eskandarian, A. (2006): Meshless Methods in Solid Mechanics. Springer Science+Business Media Inc.
Chen, J. S.; Pan, C.; Wu, C.T.; Liu, W.K. (1996) : Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures. Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 195-227.
Chen, J. S.; Pan, C.; Wu, C.T. (1997) : Large Deformation Analysis of Rubber Based on Reproducing Kernel Particle Methods. Computational Mechanics, Vol. 19, pp. 211-227.
Chen, J. S.; Pan, C.; Wu, C. T.; Roque, C, (1998) : A Lagrangian Reproducing Kernel Particle Method for Metal Forming Analysis. Computational Mechanics, Vol. 22, pp. 289-307.
Chen, J. S.; Roque, C. M. O. L.; Pan, C. (1998) : Analysis of metal forming process based on meshless method. Journal of Materials Processing Technology, Vol. 80-81, pp. 642-646.
Cingoski, V. ;Miyamoto, N.; Yamashita, H., (1998) : Element-Free Galerkin Method for Electromagnetic Field Computations. IEEE Transactions on Magnetics, Vol. 34, No. 5, pp. 3236-3239.
Duarte, C. A.; Oden, J. T. (1996): An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Engrg., Vol. 139, pp.237-262.
Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T. (1997) : Enriched Element-free Galerkin methods for crack tip fields. International Journal For Numerical Methods in Engineering, Vol. 40, pp. 1483-1504.
Gingold, R. A. ; Monaghan, J. J. (1977) : Smoothed particle hydordynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. Vol. 181, pp. 375-387.
Han, Z. D. ; Atluri, S. N. (2003) : Truly Meshless Local Petrov-Galerkin (MLPG) Solutions of Traction & Displacement BIEs. Computer Modeling in Engineering & Sciences, Vol. 4, no. 6, pp. 665-678.
Han, Z. D.; Atluri, S. N. (2004): Meshless Local Petrov-Galerkin (MLPG) approaches for solving 3D Problems in elasto-statics. Computer Modeling in Engineering & Sciences, Vol. 6, no. 2, pp. 169-188.
Ho, S. L.; Yang, S.; Machado, J. M. and Wong H. C. (2001) : Application of a Meshless Method in Electromagnetics. IEEE Trans. On Magnet., Vol. 37, no. 5, pp. 3198-3202.
Hussler-Combe, U. Korn, C. (1998): An adaptive approach with the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg., Vol. 162, 1998, pp.203-222.
Johnson, R. E.; Kiokemeister, F. L.; Wolk, E. S. (1978): Calculus and Analytic Geometry, William C Brown Pub.
Jun, S.; Im, S. (2000): Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Computational Mechanics, Vol. 25, pp.257-266.
Krongauz, Y. ; Belytschko, T. (1996) : Enforcement of essential boundary conditions in meshless approximations using finite element. Comput. Methods Appl. Mech. Engrg. Vol.131, pp. 133-145.
Krysl, P.; Belytschko, T. (1995) : Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, Vol.17, pp. 26-35.
Li, G.; Sidibe, K.; Liu, G. (2004) : Meshfree method for 3D bulk forming analysis with lower order integratin scheme. Engineering Analysis with Boundary Elements, Vol. 28, pp. 1283-1292.
Li, Q.; Shen, S.; Han, Z. D. ; Atluri, S. N. (2003) : Application of Meshless Local Petrov-Galerkin (MLPG) to Problems with Singularities, and Material Discontinuities, in 3-D Elasticity. Computer Modeling in Engineering & Sciences, Vol. 4, no. 5, pp. 567-581.
Liszka, T., and Orkisz, J. (1980): The finite difference method for arbitrary meshes. Comput. Struct., Vol. 5, pp.45-58.
Liszka, T.; Duarte, C.A.M.; Tworzydlo, W.W. (1996): hp-Meshless cloud method. Comput. Methods Appl. Mech. Engrg., vol. 139, pp.263-288.
Liu, W. K., Jun, S. and Zhang, Y. F. (1995) : Reproduction Kernel Particle methods. International Journal for Numerical Methods in Fluids, Vol. 20, pp. 1081-1106.
Liu, W. K.; Jun, S. (1998): Multiple-scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, Vol. 41, pp. 1339-1362.
Lucy, L. B. (1977) : A numerical approach to the testing of the fission hypothesis. Astron. J. Vol. 8(12), pp. 1013-1024.
Lu, Y.Y.; Belytschko, T. ; Gu, L., (1994) : A new implementation of the element-free Galerkin method. Comput. Methods Appl. Mech. Engrg. Vol. 113, pp. 397-414.
Lu, Y Y.; Belytschko,T.; Tabbara, M. T (1995) “Element-free Galerkin method for wave propagation and dynamic fracture.” Comput. Methods Appl. Mech. Engrg. Vol. 126, pp. 131-153.
Miao, J.; Lin, R.; Chen, L.; Zou, Q.; Lim, S.Y.; Seah, S.H. (2002): Design considerations in micromachined silicon microphones. Microelectronics Journal, Vol.33, pp.21-28.
Mukherejee, Y. X.; Mukherjee, S. (1997): On boundary conditions in the element-free Galerkin method. Computational Mechanics, Vol.19, pp.264-270.
Nagashima, T. (2000): Development of a CAE system based on the node-by-node meshless method, Comput. Methods Appl. Mech. Engrg., Vol. 187, pp.1-34.
Nayroles, B.; Touzot, G.; Villon, P. (1992) : Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, Vol.10, pp. 307-318.
Onate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L.; Sacco, C. (1996): Stabilized finite point method for analysis of fluid mechanics problems. Comput. Methods Appl. Mech. Engrg. Vol. 139, pp.315-346.
Ponthot, J.-P., and Belytschko T., (1998) : Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput. Methods Appl. Mech. Engrg. Vol. 152, pp.19-46.
Zeid, I. (1991): CAD/CAM Theory and Practice. McGraw-Hill Inc.
Zhu, T.; Atluri, S. N. (1998):A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element-free Galerkin method. Computational Mechanics,Vol. 21, pp. 211-222.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *