帳號:guest(3.128.78.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李孟娟
作者(外文):Mon-Juan Lee
論文名稱(中文):胃幽門螺旋桿菌生理相關蛋白質之鑑定與功能分析
論文名稱(外文):Identification and Characterization of Physiologically Significant Proteins from Helicobacter pylori
指導教授(中文):黃海美
指導教授(外文):Haimei Huang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學號:908205
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:98
中文關鍵詞:胃幽門螺旋桿菌亞精胺合成酶焦磷酸水解酶染色體核質分離
外文關鍵詞:Helicobacter pylorispermidine synthaseinorganic pyrophosphatasechromosome segregation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
胃幽門螺旋桿菌屬格蘭氏陰性之微需氧菌,為感染胃黏膜並導致胃炎及胃潰瘍之人類病原體,可在大部分菌體所無法容忍的胃部酸性環境下存活,也是胃癌與胃黏膜相關淋巴組織淋巴瘤的重要致病因子。胃幽門螺旋桿菌造成疾病的機制尚未完全被了解,且由於所需的培養條件較一般細菌嚴苛,對基因轉殖易產生抗性,使得適當之研究系統不易建立。隨著胃幽門螺旋桿菌基因體的解碼,我們可以較方便地透過重組蛋白質的建構,來研究此一病原體。
胃幽門螺旋桿菌 26695的 HP0832 (speE) 基因被預測可轉譯為亞精胺合成酶 (spermidine synthase)。亞精胺合成酶屬於多胺分子 (polyamine) 生合成途徑所需的酵素之一,主要催化腐胺 (putrescine) 及 decarboxylated S-adenosylmethionine (dcSAM) 合成亞精胺 (spermidine),而 dcSAM 的作用即為提供反應所需之丙胺基 (aminopropyl group)。胃幽門螺旋桿菌亞精胺合成酶的蛋白質序列與哺乳類,植物,以及其他菌種的亞精胺合成酶的序列一致性 (sequence identity) 低於 20%。本研究中,我們將 HP0832 基因 (786 bp) 建構在 pQE30 質體中,使其在大腸桿菌 SG13009 中過量表現,以取得胺基端 (N-terminus) 帶有六個組氨酸 (histidine) 的重組蛋白。HP0832 重組蛋白分子量為 31.9 kDa,以鎳螯合親和層析法 (Ni-NTA affinity chromatography) 純化的產率為 15 mg/L 菌液。將 HP0832 重組蛋白與腐胺及 dcSAM 作用可觀察到亞精胺的產生,由此確立其活性。此外,利用 HP0832 重組蛋白之抗體血清可偵測到胃幽門螺旋桿菌內生之亞精胺合成酶。胃幽門螺旋桿菌 26695 所含有之腐胺及亞精胺的莫耳比為 1:3,未發現其他多胺分子如精胺 (spermine) 及 norspermidine,由此推論亞精胺之合成途徑為提供胃幽門螺旋桿菌之多胺分子的主要來源。由於胃幽門螺旋桿菌的亞精胺合成酶缺少完整的 gatekeeping loop 序列,可能是導致其活性不穩定的原因之一,我們亦針對含有完整 gatekeeping loop 的大腸桿菌亞精胺合成酶 (EcSPDS) 做點突變之研究,以探討此一序列對亞精胺合成酶催化反應的重要性。
胃幽門螺旋桿菌 26695 的焦磷酸水解酶 (inorganic pyrophosphatase) 由 HP0620 (ppa) 基因所轉譯,屬於 family I 焦磷酸水解酶,由六個相同分子量 (20 kDa) 的單體構成六聚體 (homohexamer),需要鎂離子作為催化反應之輔助因子 (cofactor)。胃幽門螺旋桿菌焦磷酸水解酶 (HpPPase) 水解焦磷酸 (PPi) 的反應遵循 Michaelis-Menten 酵素動力論,在最適反應 pH 値 8.0 下,kcat 和 Km 分別為 344 s-1 及 83 μM。HpPPase 可同時被含硫基及不含硫基之還原劑所活化,不同於早期研究所提出之與雙硫鍵形成相關之抑制及再活化機制。HpPPase 中唯一的半胱氨酸 Cys15 既不屬於活化中心,亦不具有演化保守性 (evolutionarily conserved),但將此胺基酸取代後,卻導致 50% 的活性下降,以及對還原劑與氧化態麩胺基硫 (oxidized glutathione) 的敏感度降低。此外,將 Cys15 取代為絲氨酸 (serine) 亦造成熱穩定性的破壞,使 C15S HpPPase 的熱穩定性明顯低於取代活化中心之熱不穩定焦磷酸水解酶如 Y139F HpPPase 及大腸桿菌之熱不穩定焦磷酸水解酶。雖然 Cys15 並沒有位在次體介面 (subunit interface),但研究結果顯示 C15S HpPPase 熱穩定性的下降是透過破壞兩個三聚體的介面作用 (trimer-trimer interactions) 所造成。本研究首度提出 HpPPase 唯一的半胱氨酸與焦磷酸水解酶的活化,熱穩定性,以及四級結構 (quaternary structure) 的穩定有關。
Soj 與 Spo0J 兩個蛋白質加上一個或多個 parS 序列所構成的 parABS系統,在許多細菌的染色體核質分離與細胞週期的運轉扮演關鍵性的角色。在胃幽門螺旋桿菌 26695 的圓形染色體中,以序列比對方式所得到的假設性複製起點 (replication origin) oriC 序列位在 1,609,162 bp,而 Soj (HP1139) 和一帶有 Spo0J 或 ParB 保留區 (conserved domain) 的基因 (HP1138),以及與枯草桿菌之 parS 序列比對所得到的兩個胃幽門螺旋桿菌的假設性 parS 序列,皆位在複製起點附近 (origin-proximal) 20-30% 的範圍之內,與其他物種相似。此一結果以及本實驗室先前針對 Soj 與 Spo0J 所作的功能性分析提供了 parABS 系統存在於胃幽門螺旋桿菌中的有力證據。
Helicobacter pylori is a Gram-negative, microaerophilic human gastric pathogen which infects the gastric mucosa, causes gastritis and peptic ulcer disease, and is also an important risk factor for development of gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. There was a lack of information on the progression to diseases by H. pylori, which survive at the acidic pH of the gastric environment, a site that few other microbes can colonize. The requirement of a rather stringent culture condition as compared to other bacteria, and the resistance to transformation in many strains, resulted in the lack of adequate systems for genetic manipulation. With the resolution of the complete genome sequence of H. pylori, studies on this etiological agent can be more conveniently implemented through the construction of recombinant proteins.
The HP0832 (speE) gene of Helicobacter pylori strain 26695 codes for a putative spermidine synthase, which belongs to the polyamine biosynthetic pathway. Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), which serves as an aminopropyl donor. The deduced amino acid sequence of the HP0832 gene shares less than 20% sequence identity with most spermidine synthases from mammalian cells, plants and other bacteria. In this study, the HP0832 open reading frame (786 bp) was cloned into the pQE30 vector and overexpressed in Escherichia coli strain SG13009. The resulting N-terminally 6xHis-tagged HP0832 protein (31.9 kDa) was purified by Ni-NTA affinity chromatography at a yield of 15 mg/L of bacteria culture. Spermidine synthase activity of the recombinant protein was confirmed by the production of spermidine after incubating the enzyme with putrescine and dcSAM. Endogenous spermidine synthase of H. pylori was detected with an antiserum raised against the recombinant HP0832 protein. H. pylori strain 26695 contains putrescine and spermidine at a molar ratio of 1:3, but no detectable spermine or norspermidine was observed, suggesting that the spermidine biosynthetic pathway may provide the main polyamines in H. pylori strain 26695. The lack of a complete gatekeeping loop region in H. pylori spermidine synthase was suspected to be responsible for its instability in activity. Mutagenesis on conserved residues in the gatekeeping loop region of E. coli spermidine synthase (EcSDPS) was thus performed to investigate its importance to enzyme catalysis.
The inorganic pyrophosphatase of H. pylori (HpPPase) was encoded by the HP0620 (ppa) gene and was a family I PPase. It was a homohexamer consisting of identical 20-kDa subunits. Hydrolysis of PPi by HpPPase relied on the presence of magnesium and followed Michaelis-Menten kinetics, with kcat being 344 s-1 and Km being 83 μM at pH 8.0, which was the optimal pH for catalysis. HpPPase was activated by both thiol and non-thiol reductants, distinct from the previously suggested inactivation/reactivation process involving formation and breakage of disulfide bonds. Substituting Cys15 of HpPPase, which was neither located at the active site nor evolutionarily conserved, resulted in a loss of 50% of activity and a reduction in sensitivity to reductants and oxidized glutathione. In addition, the C15S replacement caused a considerable disruption in thermostability, which exceeded that resulted from active-site mutations such as Y139F HpPPase and those of E. coli. Although Cys15 was not located at the subunit interface of the hexameric HpPPase, several evidences suggested that the C15S substitution destabilized HpPPase through impairing trimer-trimer interactions. These results provided the first evidences that the single cysteine residue of HpPPase was involved in enzyme activation, thermostability, and stabilization of quaternary structure.
The Soj and Spo0J proteins, together with one or more parS sequences, constitute the parABS system, which is crucial to chromosome segregation and the progression of cell cycle in many bacteria. A putative oriC region was located at 1,609,162 bp of the circular chromosome of H. pylori 26695. Genes coding for Soj (HP1139) and a plasmid replication-partition related protein containing a Spo0J or ParB conserved domain (HP1138), together with two putative parS sites identified by blasting the parS sequence of Bacillus subtilis against the genome of H. pylori 26695, were found to be located within the origin-proximal 20-30% of the chromosome, similar to several other species. These analyses, together with previous functional studies of recombinant Soj and Spo0J proteins, led to the first implication of the existence of a functional parABS system in H. pylori.
摘要 i
Abstract iii
Abbreviation List v
誌謝 vi
Table of Contents vii

Chapter 1 Introduction 1
1-1 Helicobacter pylori 1
1-2 Complete Genome Sequences of H. pylori 1
1-3 Physiologically Significant Proteins of H. pylori 2

Chapter 2 Spermidine Synthase 3
2-1 Introduction 3
2-1-1 Polyamine Biosynthesis 3
2-1-2 Importance of Spermidine Synthase 4
2-1-3 H. pylori Spermidine Synthase 5
2-2 Materials and Methods 7
2-2-1 Cloning, Expression, and Purification 7
2-2-1-1 Materials 7
2-2-1-2 Preparation of the HP0832 Insert 7
2-2-1-3 Preparation of the pQE30 Vector 9
2-2-1-4 Preparation of the pQE30-HP0832 Plasmid 10
2-2-1-5 Transformation of E. coli Strain SG13009 10
2-2-1-6 Analysis of Transformants 11
2-2-1-7 HP0832 Protein Expression and Purification 12
2-2-2 Antibody Production 13
2-2-3 H. pylori Strain and Growth Conditions 13
2-2-4 Immunoprecipitation 13
2-2-4-1 Preparation of the Media 13
2-2-4-2 Immunoaffinity Chromatography 14
2-2-5 Western Blot Analysis 14
2-2-6 Spermidine Synthase Assay 15
2-2-6-1 Materials 15
2-2-6-2 HPLC Analysis 15
2-2-6-3 TLC Analysis 16
2-2-7 Carboxynorspermidine Synthase Assay 16
2-2-8 Site-Directed Mutagenesis of EcSPDS 17
2-3 Results 18
2-3-1 H. pylori Spermidine Synthase 18
2-3-1-1 Cloning and Expression 18
2-3-1-2 Enzyme Purification and Characterization 18
2-3-1-3 Spermidine Synthase Assay 19
2-3-1-4 Intracellular Polyamine Content of H. pylori 19
2-3-1-5 Detection of Endogenous Spermidine Synthase in H. pylori 20
2-3-2 E. coli Spermidine Synthase 21
2-3-2-1 Characterization of EcSPDS 21
2-3-2-2 Site-Directed Mutagenesis of the Gatekeeping Loop Region 22
2-4 Discussion 23
2-4-1 Characterization of H. pylori Spermidine Synthase 23
2-4-2 Synthesis of dcSAM 24
2-4-3 Analysis of Polyamines 25
2-4-4 Polyamine Biosynthesis in H. pylori 26

Chapter 3 Inorganic Pyrophosphatase 28
3-1 Introduction 28
3-1-1 Family I and Family II Inorganic Pyrophosphatases 28
3-1-2 Activation of Inorganic Pyrophosphatase 28
3-1-3 Cysteine Residues and Thermostability 29
3-1-4 H. pylori Inorganic Pyrophosphatase 30
3-2 Materials and Methods 31
3-2-1 Enzyme Expression and Purification 31
3-2-2 Site-Directed Mutagenesis 31
3-2-3 Inorganic Pyrophosphatase Assay 31
3-2-4 Circular Dichroism Spectroscopy 32
3-2-5 Sedimentation 32
3-3 Results 33
3-3-1 Characterization of HpPPase 33
3-3-2 Activation of HpPPase 33
3-3-3 Effect of C15S Replacement on Enzyme Activity and Reductant Activation 34
3-3-4 Effect of C15S Replacement on Thermostability and Quaternary Structure 35
3-3-5 Effect of pH 37
3-3-6 Effect of Replacement on Conformation 37
3-4 Discussion 38

Chapter 4 Chromosome Segregation System 40
4-1 Introduction 40
4-1-1 parABS Chromosome Segregation System 40
4-1-2 parABS System in H. pylori 41
4-2 Results and Discussion 43
4-2-1 Nucleotide Sequence Analysis 43
4-2-2 Identification of oriC in H. pylori Strain 26695 43
4-2-3 Localization of parABS Relative to oriC 44

References 46
Figures 61
Tables 90
Publication List 98
Alm, R.A., L.S. Ling, D.T. Moir, B.L. King, E.D. Brown, P.C. Doig, D.R. Smith, B. Noonan, B.C. Guild, B.L. deJonge, G. Carmel, P.J. Tummino, A. Caruso, M. Uria-Nickelsen, D.M. Mills, C. Ives, R. Gibson, D. Merberg, S.D. Mills, Q. Jiang, D.E. Taylor, G.F. Vovis, and T.J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 397:176-80.
Aoki, M., T. Uchiumi, E. Tsuji, and A. Hachimori. 1998. Effect of replacement of His-118, His-125 and Trp-143 by alanine on the catalytic activity and subunit assembly of inorganic pyrophosphatase from thermophilic bacterium PS-3. Biochem J. 331 ( Pt 1):143-8.
Atherton, J.C., R.M. Peek, Jr., K.T. Tham, T.L. Cover, and M.J. Blaser. 1997. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology. 112:92-9.
Autret, S., R. Nair, and J. Errington. 2001. Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol. 41:743-55.
Avaeva, S.M., E.V. Rodina, N.N. Vorobyeva, S.A. Kurilova, T.I. Nazarova, V.A. Sklyankina, V.Y. Oganessyan, V.R. Samygina, and E.H. Harutyunyan. 1998. Three-dimensional structures of mutant forms of E. coli inorganic pyrophosphatase with Asp-->Asn single substitution in positions 42, 65, 70, and 97. Biochemistry (Mosc). 63:671-84.
Batchelor, K.W., R.A. Smith, and N.S. Watson. 1986. Dicyclohexylamine is not an inhibitor of spermidine synthase. Biochem J. 233:307-8.
Baykov, A.A., B.S. Cooperman, A. Goldman, and R. Lahti. 1999. Cytoplasmic inorganic pyrophosphatase. Prog Mol Subcell Biol. 23:127-50.
Baykov, A.A., V.Y. Dudarenkov, J. Kapyla, T. Salminen, T. Hyytia, V.N. Kasho, S. Husgafvel, B.S. Cooperman, A. Goldman, and R. Lahti. 1995. Dissociation of hexameric Escherichia coli inorganic pyrophosphatase into trimers on His-136-->Gln or His-140-->Gln substitution and its effect on enzyme catalytic properties. J Biol Chem. 270:30804-12.
Baykov, A.A., A.S. Shestakov, V.N. Kasho, A.V. Vener, and A.H. Ivanov. 1990. Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions. Eur J Biochem. 194:879-87.
Belogurov, G.A., I.P. Fabrichniy, P. Pohjanjoki, V.N. Kasho, E. Lehtihuhta, M.V. Turkina, B.S. Cooperman, A. Goldman, A.A. Baykov, and R. Lahti. 2000. Catalytically important ionizations along the reaction pathway of yeast pyrophosphatase. Biochemistry. 39:13931-8.
Bendtsen, J.D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 340:783-95.
Bignell, C., and C.M. Thomas. 2001. The bacterial ParA-ParB partitioning proteins. J Biotechnol. 91:1-34.
Bismuto, E., F. Febbraio, S. Limongelli, R. Briante, and R. Nucci. 2003. Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability. Proteins. 51:10-20.
Bitonti, A.J., S.E. Kelly, and P.P. McCann. 1984. Characterization of spermidine synthase from Trypanosoma brucei brucei. Mol Biochem Parasitol. 13:21-8.
Bitonti, A.J., P.P. McCann, and A. Sjoerdsma. 1982. Restriction of bacterial growth by inhibition of polyamine biosynthesis by using monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulphate. Biochem J. 208:435-41.
Blaser, M.J. 1997. Not all Helicobacter pylori strains are created equal: should all be eliminated? Lancet. 349:1020-2.
Bouet, J.Y., and B.E. Funnell. 1999. P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. Embo J. 18:1415-24.
Bowman, W.H., C.W. Tabor, and H. Tabor. 1973. Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem. 248:2480-6.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-54.
Bult, C.J., O. White, G.J. Olsen, L. Zhou, R.D. Fleischmann, G.G. Sutton, J.A. Blake, L.M. FitzGerald, R.A. Clayton, J.D. Gocayne, A.R. Kerlavage, B.A. Dougherty, J.F. Tomb, M.D. Adams, C.I. Reich, R. Overbeek, E.F. Kirkness, K.G. Weinstock, J.M. Merrick, A. Glodek, J.L. Scott, N.S. Geoghagen, and J.C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 273:1058-73.
Burley, S.K., and G.A. Petsko. 1988. Weakly polar interactions in proteins. Adv Protein Chem. 39:125-89.
Caruso, A., A. Pellati, P. Bosi, N. Arena, and G. Stabellini. 1992. Effects of spermidine synthase inhibition in cultured chick embryo fibroblasts. Cell Biol Int Rep. 16:349-58.
Chalker, A.F., H.W. Minehart, N.J. Hughes, K.K. Koretke, M.A. Lonetto, K.K. Brinkman, P.V. Warren, A. Lupas, M.J. Stanhope, J.R. Brown, and P.S. Hoffman. 2001. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol. 183:1259-68.
Chao, T.C., H. Huang, J.Y. Tsai, C.Y. Huang, and Y.J. Sun. 2006. Kinetic and structural properties of inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. PROTEINS: Structure, Function, and Bioinformatics:in press.
Chen, J., A. Brevet, M. Fromant, F. Leveque, J.M. Schmitter, S. Blanquet, and P. Plateau. 1990. Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol. 172:5686-9.
Cooperman, B.S., A.A. Baykov, and R. Lahti. 1992. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci. 17:262-6.
Cover, T.L., and M.J. Blaser. 1996. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med. 41:85-117.
Creighton, T.E. 1993. Proteins. W. H. Freeman & Co., New York.
Danesh, J. 1999. Is Helicobacter pylori infection a cause of gastric neoplasia? In Cancer Surveys. Vol. 33. R. Newton, V. Beral, and R.A. Weiss, editors. Imperial Cancer Research Fund, London. 263-289.
Davey, M.J., and B.E. Funnell. 1994. The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem. 269:29908-13.
Davis, M.A., K.A. Martin, and S.J. Austin. 1992. Biochemical activities of the parA partition protein of the P1 plasmid. Mol Microbiol. 6:1141-7.
Dejima, H., M. Kobayashi, H. Takasaki, N. Takeda, A. Shirahata, and K. Samejima. 2003. Synthetic decarboxylated S-adenosyl-L-methionine as a substrate for aminopropyl transferases. Biol Pharm Bull. 26:1005-8.
Donahue, J.P., D.A. Israel, R.M. Peek, M.J. Blaser, and G.G. Miller. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol Microbiol. 37:1066-74.
Dunn, B.E., H. Cohen, and M.J. Blaser. 1997. Helicobacter pylori. Clin Microbiol Rev. 10:720-41.
Easter, J., Jr., and J.W. Gober. 2002. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell. 10:427-34.
Eaton, K.A., C.L. Brooks, D.R. Morgan, and S. Krakowka. 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun. 59:2470-5.
Eaton, K.A., S. Suerbaum, C. Josenhans, and S. Krakowka. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun. 64:2445-8.
Ebersbach, G., and K. Gerdes. 2004. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Microbiol. 52:385-98.
Feuerstein, B.G., D.F. Deen, and L.J. Marton. 1985. Effects of dicyclohexylamine sulfate, a spermidine synthase inhibitor, in 9L rat brain tumor cells. Cancer Res. 45:4950-4.
Figge, R.M., J. Easter, and J.W. Gober. 2003. Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol. 47:1225-37.
Forman, D. 1998. Helicobacter pylori infection and cancer. Br Med Bull. 54:71-8.
Fox, J.G., and T.C. Wang. 2001. Helicobacter pylori--not a good bug after all! N Engl J Med. 345:829-32.
Fraser, C.M., J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann, C.J. Bult, A.R. Kerlavage, G. Sutton, J.M. Kelley, and et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science. 270:397-403.
Freeman, J.M., T.N. Plasterer, T.F. Smith, and S.C. Mohr. 1998. Patterns of genome organization in bacteria. Science. 279:1827a.
Fung, E., J.Y. Bouet, and B.E. Funnell. 2001. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. Embo J. 20:4901-11.
Furuumi, N., D. Amano, Y.J. Xu, K. Samejima, M. Niitsu, and A. Shirahata. 1998. Ionspray ionization-mass spectrometric separation and determination of heptafluorobutyryl derivatives of polyamines. Anal Biochem. 265:253-9.
Giles, N.M., G.I. Giles, and C. Jacob. 2003. Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commun. 300:1-4.
Glaser, P., M.E. Sharpe, B. Raether, M. Perego, K. Ohlsen, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11:1160-8.
Gonzalez, N.S., A. Huber, and I.D. Algranati. 2001. Spermidine is essential for normal proliferation of trypanosomatid protozoa. FEBS Lett. 508:323-6.
Gordon, G.S., D. Sitnikov, C.D. Webb, A. Teleman, A. Straight, R. Losick, A.W. Murray, and A. Wright. 1997. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell. 90:1113-21.
Grigoriev, A. 2000. Graphical genome comparison: rearrangements and replication origin of Helicobacter pylori. Trends Genet. 16:376-8.
Hamana, K., and S. Matsuzaki. 1992. Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol. 18:261-83.
Hamasaki-Katagiri, N., C.W. Tabor, and H. Tabor. 1997. Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene. 187:35-43.
Hansen, T., C. Urbanke, V.M. Leppanen, A. Goldman, K. Brandenburg, and G. Schafer. 1999. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization. Arch Biochem Biophys. 363:135-47.
Hanzawa, Y., T. Takahashi, A.J. Michael, D. Burtin, D. Long, M. Pineiro, G. Coupland, and Y. Komeda. 2000. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. Embo J. 19:4248-56.
Harutyunyan, E.H., I.P. Kuranova, B.K. Vainshtein, W.E. Hohne, V.S. Lamzin, Z. Dauter, A.V. Teplyakov, and K.S. Wilson. 1996. X-ray structure of yeast inorganic pyrophosphatase complexed with manganese and phosphate. Eur J Biochem. 239:220-8.
Hashimoto, T., K. Tamaki, K. Suzuki, and Y. Yamada. 1998. Molecular cloning of plant spermidine synthases. Plant Cell Physiol. 39:73-9.
Heby, O., S.C. Roberts, and B. Ullman. 2003. Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem Soc Trans. 31:415-9.
Heikinheimo, P., J. Lehtonen, A. Baykov, R. Lahti, B.S. Cooperman, and A. Goldman. 1996a. The structural basis for pyrophosphatase catalysis. Structure. 4:1491-508.
Heikinheimo, P., P. Pohjanjoki, A. Helminen, M. Tasanen, B.S. Cooperman, A. Goldman, A. Baykov, and R. Lahti. 1996b. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Eur J Biochem. 239:138-43.
Hibasami, H., S. Maekawa, T. Murata, and K. Nakashima. 1989. Antitumor effect of a new multienzyme inhibitor of polyamine synthetic pathway, methylglyoxal- bis(cyclopentylamidinohydrazone), against human and mouse leukemia cells. Cancer Res. 49:2065-8.
Hibasami, H., M. Sakurai, S. Maekawa, and K. Nakashima. 1987. Methylthiopropylamine, a potent inhibitor of spermidine synthase and its antiproliferative effect on human lymphoid leukemia Molt 4B cells. Anticancer Res. 7:1213-6.
Hibi, N., S. Higashiguchi, T. Hashimoto, and Y. Yamada. 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell. 6:723-35.
Hofmann, K., P. Bucher, L. Falquet, and A. Bairoch. 1999. The PROSITE database, its status in 1999. Nucleic Acids Res. 27:215-9.
Hsiao, Y.Y., R.C. Van, S.H. Hung, H.H. Lin, and R.L. Pan. 2004. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta. 1608:190-9.
Huang, J.Q., S. Sridhar, Y. Chen, and R.H. Hunt. 1998. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology. 114:1169-79.
Husek, P., Z.H. Huang, and C.C. Sweeley. 1992. Gas-Chromatographic Determination of Amines, Aminoalcohols and Acids after Treatment with Alkyl Chloroformates. Analytica Chimica Acta. 259:185-192.
Hwang, D.F., S.H. Chang, C.Y. Shiua, and T.J. Chai. 1997. High-performance liquid chromatographic determination of biogenic amines in fish implicated in food poisoning. Journal of Chromatography B. 693:23-29.
Igarashi, K., and K. Kashiwagi. 2000. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 271:559-64.
Islam, M.K., T. Miyoshi, H. Kasuga-Aoki, T. Isobe, T. Arakawa, Y. Matsumoto, and N. Tsuji. 2003. Inorganic pyrophosphatase in the roundworm Ascaris and its role in the development and molting process of the larval stage parasites. Eur J Biochem. 270:2814-26.
Jacob, F., S. Brenner, and F. Cuzin. 1963. On the regulation of DNA synthesis in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28:329-348.
Jakimowicz, D., K. Chater, and J. Zakrzewska-Czerwinska. 2002. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol Microbiol. 45:1365-77.
Jamieson, G.A. 1963. The synthesis of 5'-deoxy-5'-S-(3-methylthiopropylamine) sulfoniumadenosine (decarboxylated S-adenosylmethionine). J Org Chem. 28:2397-400.
Jin, Y., J.W. Bok, D. Guzman-de-Pena, and N.P. Keller. 2002. Requirement of spermidine for developmental transitions in Aspergillus nidulans. Mol Microbiol. 46:801-12.
Josse, J. 1966. Constitutive inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J Biol Chem. 241:1948-55.
Kaiser, A., A. Gottwald, W. Maier, and H.M. Seitz. 2003. Targeting enzymes involved in spermidine metabolism of parasitic protozoa--a possible new strategy for anti-parasitic treatment. Parasitol Res. 91:508-16.
Kaiser, A., A. Gottwald, C. Wiersch, B. Lindenthal, W. Maier, and H.M. Seitz. 2001. Effect of drugs inhibiting spermidine biosynthesis and metabolism on the in vitro development of Plasmodium falciparum. Parasitol Res. 87:963-72.
Kajander, E.O., L.I. Kauppinen, R.L. Pajula, K. Karkola, and T.O. Eloranta. 1989. Purification and partial characterization of human polyamine synthases. Biochem J. 259:879-86.
Kankare, J., G.S. Neal, T. Salminen, T. Glumoff, T. Glumhoff, B.S. Cooperman, R. Lahti, and A. Goldman. 1994. The structure of E.coli soluble inorganic pyrophosphatase at 2.7 A resolution. Protein Eng. 7:823-30.
Kapyla, J., T. Hyytia, R. Lahti, A. Goldman, A.A. Baykov, and B.S. Cooperman. 1995. Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia coli inorganic pyrophosphatase. Biochemistry. 34:792-800.
Kasukabe, Y., L. He, K. Nada, S. Misawa, I. Ihara, and S. Tachibana. 2004. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45:712-22.
Ke, S.H., and E.L. Madison. 1997. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 25:3371-2.
Koonin, E.V. 1993. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol. 229:1165-74.
Korolev, S., Y. Ikeguchi, T. Skarina, S. Beasley, C. Arrowsmith, A. Edwards, A. Joachimiak, A.E. Pegg, and A. Savchenko. 2002. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol. 9:27-31.
Lacy, B.E., and J. Rosemore. 2001. Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr. 131:2789S-2793S.
Lahti, R., and J. Heinonen. 1981. Reversible changes in the activity of inorganic pyrophosphatase of Streptococcus faecalis. The effect of compounds containing SH-groups. Acta Chem Scand B. 35:33-8.
Lahti, R., L.F. Kolakowski, Jr., J. Heinonen, M. Vihinen, K. Pohjanoksa, and B.S. Cooperman. 1990a. Conservation of functional residues between yeast and E. coli inorganic pyrophosphatases. Biochim Biophys Acta. 1038:338-45.
Lahti, R., and T. Niemi. 1981. Purification and some properties of inorganic pyrophosphatase from Streptococcus faecalis. J Biochem (Tokyo). 90:79-85.
Lahti, R., K. Pohjanoksa, T. Pitkaranta, P. Heikinheimo, T. Salminen, P. Meyer, and J. Heinonen. 1990b. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Biochemistry. 29:5761-6.
Lahti, R., T. Salminen, S. Latonen, P. Heikinheimo, K. Pohjanoksa, and J. Heinonen. 1991. Genetic engineering of Escherichia coli inorganic pyrophosphatase. Tyr55 and Tyr141 are important for the structural integrity. Eur J Biochem. 198:293-7.
Lahti, R., and M. Suonpaa. 1982. Role of glutathione in the regulation of inorganic pyrophosphatase activity in Streptococcus faecalis. J Gen Microbiol. 128:1023-6.
Lakanen, J.R., A.E. Pegg, and J.K. Coward. 1995. Synthesis and biochemical evaluation of adenosylspermidine, a nucleoside-polyamine adduct inhibitor of spermidine synthase. J Med Chem. 38:2714-27.
Lee, M.J., C.Y. Huang, Y.J. Sun, and H. Huang. 2005. Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695. Protein Expr Purif. 43:140-8.
Leonard, T.A., P.J. Butler, and J. Lowe. 2004. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol. 53:419-32.
Leonard, T.A., P.J. Butler, and J. Lowe. 2005. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. Embo J. 24:270-82.
Leppanen, V.M., H. Nummelin, T. Hansen, R. Lahti, G. Schafer, and A. Goldman. 1999. Sulfolobus acidocaldarius inorganic pyrophosphatase: structure, thermostability, and effect of metal ion in an archael pyrophosphatase. Protein Sci. 8:1218-31.
Lewis, P.J., and J. Errington. 1997. Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein. Mol Microbiol. 25:945-54.
Li, Y.F., S. Hess, L.K. Pannell, C. White Tabor, and H. Tabor. 2001. In vivo mechanism-based inactivation of S-adenosylmethionine decarboxylases from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 98:10578-83.
Li, Z., L. Zhan, and M.P. Deutscher. 1996. The role of individual cysteine residues in the activity of Escherichia coli RNase T. J Biol Chem. 271:1127-32.
Lin, D.C., and A.D. Grossman. 1998. Identification and characterization of a bacterial chromosome partitioning site. Cell. 92:675-85.
Lin, D.C., P.A. Levin, and A.D. Grossman. 1997. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A. 94:4721-6.
Liu, C.H. 2005. Functional studies of the chromosome segregation proteins Spo0J (Hp1138) and Soj (Hp1139) from Helicobacter pylori. Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
Lobocka, M., and M. Yarmolinsky. 1996. P1 plasmid partition: a mutational analysis of ParB. J Mol Biol. 259:366-82.
Lu, P.K. 2005. Crystal structure studies of spermidine synthase from Helicobacter pylori. Master Thesis, National Tsing Hua University, Hsinchu, Taiwan.
Lu, P.K., S.Y. Chien, J.Y. Tsai, C.T. Fong, M.J. Lee, H. Huang, and Y.J. Sun. 2004. Crystallization and preliminary X-ray diffraction analysis of spermidine synthase from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr. 60:2067-9.
Lundin, M., H. Baltscheffsky, and H. Ronne. 1991. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 266:12168-72.
Markham, G.D., C.W. Tabor, and H. Tabor. 1982. S-adenosylmethionine decarboxylase of Escherichia coli. Studies on the covalently linked pyruvate required for activity. J Biol Chem. 257:12063-8.
Marston, A.L., and J. Errington. 1999. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell. 4:673-82.
Mattila, T., T. Honkanen-Buzalski, and H. Poso. 1984. Reversible inhibition of bacterial growth after specific inhibition of spermidine synthase by dicyclohexylamine. Biochem J. 223:823-30.
Messer, W., and C. Weigel. 1996. Initiation of chromosome replication. In Escherichia coli and Salmonella. Cellular and Molecular Biology. F.C. Neidhardt, R. Curtis, III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, editors. ASM Press, Washington, DC. 1579-1601.
Meyer, J., M.D. Clay, M.K. Johnson, A. Stubna, E. Munck, C. Higgins, and P. Wittung-Stafshede. 2002. A hyperthermophilic plant-type [2Fe-2S] ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond. Biochemistry. 41:3096-108.
Michael, A.J. 1999. Genes of polyamine synthesis and transport: Exploiting genome projects to determine similarities and differences between plant, microbial and animal polyamine metabolic pathways. In Polyamines in Health and Nutrition. S. Bardocz and A. White, editors. Kluwer Academic Publishers, Boston/Dordrecht/London. 55-64.
Mimura, H., Y. Nakanishi, and M. Maeshima. 2005. Disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure. FEBS Lett. 579:3625-31.
Mohl, D.A., J. Easter, Jr., and J.W. Gober. 2001. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol. 42:741-55.
Mohl, D.A., and J.W. Gober. 1997. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell. 88:675-84.
Moore, R.C., and S.M. Boyle. 1990. Nucleotide sequence and analysis of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J Bacteriol. 172:4631-40.
Morgan, D.M. 1998. Determination of polyamines as their benzoylated derivatives by HPLC. Methods Mol Biol. 79:111-8.
Morgan, D.M.L. 1999. Polyamine biosynthesis, catabolism and homeostasis: An overview. In Polyamines in Health and Nutrition. S. Bardocz and A. White, editors. Kluwer Academic Publishers, Boston/Dordrecht/London. 3-26.
Naganna, B. 1950. Erythrocyte pyrophosphatase in health and disease. II. Reversible and irreversible inactivations of the enzyme. J Biol Chem. 183:693-708.
Nagano, N., M. Ota, and K. Nishikawa. 1999. Strong hydrophobic nature of cysteine residues in proteins. FEBS Lett. 458:69-71.
Nakao, H., S. Shinoda, and S. Yamamoto. 1990a. Purification and properties of carboxynorspermidine decarboxylase, a novel enzyme involved in norspermidine biosynthesis, from Vibrio alginolyticus. J Gen Microbiol. 136:1699-1704.
Nakao, H., S. Shinoda, and S. Yamamoto. 1990b. Purification and some properties of carboxynorspermidine synthase participating in a novel biosynthetic pathway for norspermidine in Vibrio alginolyticus. J Gen Microbiol. 137:1737-1742.
Nitta, T., K. Igarashi, and N. Yamamoto. 2002. Polyamine depletion induces apoptosis through mitochondria-mediated pathway. Exp Cell Res. 276:120-8.
Oganessyan, V., S.A. Kurilova, N.N. Vorobyeva, T.I. Nazarova, A.N. Popov, A.A. Lebedev, S.M. Avaeva, and E.H. Harutyunyan. 1994. X-ray crystallographic studies of recombinant inorganic pyrophosphatase from Escherichia coli. FEBS Lett. 348:301-4.
Oliva, G., I. Romero, G. Ayala, I. Barrios-Jacobo, and H. Celis. 2000. Characterization of the inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. Arch Microbiol. 174:104-10.
Parfenyev, A.N., A. Salminen, P. Halonen, A. Hachimori, A.A. Baykov, and R. Lahti. 2001. Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J Biol Chem. 276:24511-8.
Pegg, A.E. 1986. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 234:249-62.
Pegg, A.E. 1988. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 48:759-74.
Pegg, A.E., A.J. Bitonti, P.P. McCann, and J.K. Coward. 1983. Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS Lett. 155:192-6.
Pegg, A.E., R. Poulin, and J.K. Coward. 1995. Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function. Int J Biochem Cell Biol. 27:425-42.
Picard, V., E. Ersdal-Badju, A. Lu, and S.C. Bock. 1994. A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 22:2587-91.
Pitkin, J., and R.H. Davis. 1990. The genetics of polyamine synthesis in Neurospora crassa. Arch Biochem Biophys. 278:386-91.
Porta, R., C. Esposito, and O.Z. Sellinger. 1981. Rapid assay of spermidine synthase activity for high-performance liquid chromatography. J Chromatogr. 226:208-12.
Quisel, J.D., and A.D. Grossman. 2000. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol. 182:3446-51.
Quisel, J.D., D.C. Lin, and A.D. Grossman. 1999. Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell. 4:665-72.
Radnedge, L., B. Youngren, M. Davis, and S. Austin. 1998. Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. Embo J. 17:6076-85.
Raina, A., T. Hyvonen, T. Eloranta, M. Voutilainen, K. Samejima, and B. Yamanoha. 1984. Polyamine synthesis in mammalian tissues. Isolation and characterization of spermidine synthase from bovine brain. Biochem J. 219:991-1000.
Rapoport, S., and D. Scheuch. 1960. Glutathione stability and pyrophosphatase activity in reticulocytes; direct evidence for the importance of glutathione for the enzyme status in intact cells. Nature. 186:967-8.
Raso, S.W., P.L. Clark, C. Haase-Pettingell, J. King, and G.J. Thomas, Jr. 2001. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins. J Mol Biol. 307:899-911.
Redmond, J.W., and A. Tseng. 1979. High-pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. Journal of Chromatography. 170:479-481.
Roberts, S.J., J.C. Morris, R.C. Dobson, and J.A. Gerrard. 2003. The preparation of (S)-aspartate semi-aldehyde appropriate for use in biochemical studies. Bioorg Med Chem Lett. 13:265-7.
Salminen, A., A.N. Parfenyev, K. Salli, I.S. Efimova, N.N. Magretova, A. Goldman, A.A. Baykov, and R. Lahti. 2002. Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site. J Biol Chem. 277:15465-71.
Salminen, T., J. Kapyla, P. Heikinheimo, J. Kankare, A. Goldman, J. Heinonen, A.A. Baykov, B.S. Cooperman, and R. Lahti. 1995. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry. 34:782-91.
Salzberg, S.L., A.J. Salzberg, A.R. Kerlavage, and J.F. Tomb. 1998. Skewed oligomers and origins of replication. Gene. 217:57-67.
Samejima, K., W. Dairman, J. Stone, and S. Udenfriend. 1971a. Condensation of ninhydrin with aldehydes and primary amines to yield highly fluorescent ternary products. II. Application to the detection and assay of peptides, amino acids, amines, and amino sugars. Anal Biochem. 42:237-47.
Samejima, K., W. Dairman, and S. Udenfriend. 1971b. Condensation of ninhydrin with aldehydes and primary amines to yield highly fluorescent ternary products. I. Studies on the mechanism of the reaction and some characteristics of the condensation product. Anal Biochem. 42:222-36.
Samejima, K., Y. Nakazawa, and I. Matsunaga. 1978. Improved synthesis of decarboxylated S-adenosylmethionine and related sulfonium compounds. Chem Pharm Bull. 26:1480-5.
Samejima, K., and B. Yamanoha. 1982. Purification of spermidine synthase from rat ventral prostate by affinity chromatography on immobilized S-adenosyl (5')-3-thiopropylamine. Arch Biochem Biophys. 216:213-22.
Scheiman, J.M., and A.F. Cutler. 1999. Helicobacter pylori and gastric cancer. Am J Med. 106:222-6.
Schipper, R.G., L.C. Penning, and A.A. Verhofstad. 2000. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin Cancer Biol. 10:55-68.
Schuck, P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78:1606-19.
Schwede, T., J. Kopp, N. Guex, and M.C. Peitsch. 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31:3381-5.
Seiler, N. 2003. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr Drug Targets. 4:537-64.
Sharpe, M.E., and J. Errington. 1996. The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol. 21:501-9.
Shintani, T., T. Uchiumi, T. Yonezawa, A. Salminen, A.A. Baykov, R. Lahti, and A. Hachimori. 1998. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes. FEBS Lett. 439:263-6.
Shirahata, A., N. Takahashi, T. Beppu, H. Hosoda, and K. Samejima. 1993. Effects of inhibitors of spermidine synthase and spermine synthase on polyamine synthesis in rat tissues. Biochem Pharmacol. 45:1897-903.
Shirahata, A., Y. Takeda, M. Kawase, and K. Samejima. 1983. Detection of spermine and thermospermine by thin-layer chromatography. Journal of Chromatography. 262:451-454.
Sonnewald, U. 1992. Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J. 2:571-81.
Springs, B., K.M. Welsh, and B.S. Cooperman. 1981. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: inorganic phosphate equilibration. Biochemistry. 20:6384-91.
Srivenugopal, K.S., and P.R. Adiga. 1980. Coexistence of two pathways of spermidine biosynthesis in Lathyrus sativus seedlings. FEBS Lett. 112:260-4.
Sullivan, S.M., and J.R. Maddock. 2000. Bacterial sporulation: pole-to-pole protein oscillation. Curr Biol. 10:R159-61.
Tabor, C.W., and H. Tabor. 1984. Polyamines. Annu Rev Biochem. 53:749-90.
Tabor, C.W., H. Tabor, and Q.W. Xie. 1986. Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci U S A. 83:6040-4.
Takaji, S., H. Hibasami, I. Imoto, Y. Hashimoto, K. Nakao, N. Ikemura, Y. Taguchi, and K. Nakashima. 1997. Growth inhibition of Helicobacter pylori by a polyamine synthesis inhibitor, methylglyoxal bis(cyclopentylamidino- hydrazone). Lett Appl Microbiol. 25:177-80.
Tang, K.C., R. Mariuza, and J.K. Coward. 1981. Synthesis and evaluation of some stable multisubstrate adducts as specific inhibitors of spermidine synthase. J Med Chem. 24:1277-84.
Tang, K.C., A.E. Pegg, and J.K. Coward. 1980. Specific and potent inhibition of spermidine synthase by the transition-state analog, S-adenosyl-3-thio- 1,8-diaminooctane. Biochem Biophys Res Commun. 96:1371-7.
Tatara, Y., T. Yoshida, and E. Ichishima. 2005. A single free cysteine residue and disulfide bond contribute to the thermostability of Aspergillus saitoi 1,2-alpha-mannosidase. Biosci Biotechnol Biochem. 69:2101-8.
Telford, J.L., P. Ghiara, M. Dell'Orco, M. Comanducci, D. Burroni, M. Bugnoli, M.F. Tecce, S. Censini, A. Covacci, Z. Xiang, and et al. 1994. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med. 179:1653-58.
Teplyakov, A., G. Obmolova, K.S. Wilson, K. Ishii, H. Kaji, T. Samejima, and I. Kuranova. 1994. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Protein Sci. 3:1098-107.
Thomas, T., and T.J. Thomas. 2003. Polyamine metabolism and cancer. J Cell Mol Med. 7:113-26.
Tomb, J.F., O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, J.C. Venter, and et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388:539-47.
Tuominen, V., P. Heikinheimo, T. Kajander, T. Torkkel, T. Hyytia, J. Kapyla, R. Lahti, B.S. Cooperman, and A. Goldman. 1998. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications. J Mol Biol. 284:1565-80.
Uemura, N., S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi, M. Yamakido, K. Taniyama, N. Sasaki, and R.J. Schlemper. 2001. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 345:784-9.
Volk, S.E., V.Y. Dudarenkov, J. Kapyla, V.N. Kasho, O.A. Voloshina, T. Salminen, A. Goldman, R. Lahti, A.A. Baykov, and B.S. Cooperman. 1996. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Biochemistry. 35:4662-9.
Ware, D., and J.R. Postgate. 1970. Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Nature. 226:1250-1.
Watanabe, E., M. Wachi, M. Yamasaki, and K. Nagai. 1992. ATPase activity of SopA, a protein essential for active partitioning of F plasmid. Mol Gen Genet. 234:346-52.
Webb, C.D., A. Teleman, S. Gordon, A. Straight, A. Belmont, D.C. Lin, A.D. Grossman, A. Wright, and R. Losick. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell. 88:667-74.
Wiest, L., and A.E. Pegg. 1998. Assay of spermidine and spermine synthases. Methods Mol Biol. 79:51-7.
Wu, C.A., N.K. Lokanath, D.Y. Kim, H.J. Park, H.Y. Hwang, S.T. Kim, S.W. Suh, and K.K. Kim. 2005. Structure of inorganic pyrophosphatase from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr. 61:1459-64.
Xie, Q.W., C.W. Tabor, and H. Tabor. 1993. Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene. 126:115-7.
Yamaichi, Y., and H. Niki. 2000. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A. 97:14656-61.
Yamanoha, B., and S.S. Cohen. 1985. S-Adenosylmethionine decarboxylase and spermidine synthase from Chinese cabbage. Plant Physiol. 78:784-90.
Yoon, S.O., Y.S. Lee, S.H. Lee, and Y.D. Cho. 2000. Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim Biophys Acta. 1475:17-26.
Young, T.W., N.J. Kuhn, A. Wadeson, S. Ward, D. Burges, and G.D. Cooke. 1998. Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? Microbiology. 144 ( Pt 9):2563-71.
Zappia, V., G. Cacciapuoti, G. Pontoni, and A. Oliva. 1980. Mechanism of propylamine-transfer reactions. Kinetic and inhibition studies on spermidine synthase from Escherichia coli. J Biol Chem. 255:7276-80.
Zawilak, A., S. Cebrat, P. Mackiewicz, A. Krol-Hulewicz, D. Jakimowicz, W. Messer, G. Gosciniak, and J. Zakrzewska-Czerwinska. 2001. Identification of a putative chromosomal replication origin from Helicobacter pylori and its interaction with the initiator protein DnaA. Nucleic Acids Res. 29:2251-9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *