帳號:guest(3.14.254.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳孟益
作者(外文):Meng-Yi Wu
論文名稱(中文):新型溝槽式分離閘快閃式記憶體
論文名稱(外文):Enhancement of Cell Size and Programming Efficiency Using a Trenched Split Gate Flash Memory
指導教授(中文):金雅琴
指導教授(外文):Ya-Chin King
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:909004
出版年(民國):95
畢業學年度:94
語文別:英文中文
論文頁數:103
中文關鍵詞:快閃式記憶體彈道式注入分離閘垂直電晶體
外文關鍵詞:Flash MemoryBallistic Source Side InjectionAND-type ArrayTrenchedBSSINon-Volatile
相關次數:
  • 推薦推薦:0
  • 點閱點閱:137
  • 評分評分:*****
  • 下載下載:37
  • 收藏收藏:0
分離閘快閃式記憶體與一般堆疊閘快閃式記憶體相比,擁有高效率高速度的編碼,然而卻因為多擁有一個選擇閘的部分及位元線的金屬接觸窗部分而使得元件不易縮小化。這篇論文提出了一個新型的分離閘快閃式記憶體架構,其擁有垂直式的選擇閘部分,源極端是共用在深N-型井,並且整個元件陣列架構是利用虛擬接地的AND型陣列,使得這個元件可以達到5F2的元件面積,而且具有獨特的彈道式源極端熱電子注入,而同時能達到高密度、高速度的分離閘快閃式記憶體。
這篇論文完整地介紹了這顆新元件,其中包含著完整的元件製程設計,實作流程,以及詳細電性討論。
Split gate flash memory has the advantage of a higher programming current and efficiency than conventional stacked gate flash memories. It has an additional select gate and requires one bit-line contact per cell, therefore cannot easily achieve high storage density, nor can it be easily scaled down. This investigation proposes a novel split gate flash cell with a vertical trenched transistor. Incorporating a unique ballistic hot electron injection mechanism and a trench select gate structure, this cell not only offers high program efficiency, but also is 50% smaller than conventional planar split gate flash memories, which make it more competitive for high-density storage applications. The flash memory cells are best arranged in a virtual ground AND-type array, which is thus called Ballistic injection AND-Type Flash EEPROM (BiAND). The BiAND flash memory cell can be very efficiently and rapidly written by adapting the source side injection operation. Additionally, the sharing select gate effect, that is widening the trenched select transistor increases the programming current and the read current, is also discussed comprehensively.

This thesis introduces the unique flash memory cell with the trenched select transistor. The process flows for fabricating the BiAND flash memory cell are designed, simulated and implemented. The detailed electrical characteristics of the BiAND cell are accurately measured. The cell performance is discussed extensively to evaluate the feasibility of this novel cell.
Abstract i
Acknowledgment ii
List of Contents iii
List of Figures iv
List of Tables vii
1 Introduction 1
2 Split Gate Flash Memory and AND-type Array 4
2.1 Flash Memory Device 4
2.2 Introduction of AND-type Arrays 7
2.3 Conventional Split Gate Flash Memory Cells 9
2.4 Current Status Reviews 14
3 BiAND Flash Memory 31
3.1 Cell Structure 32
3.2 Operation Principles 34
3.3 BiAND Array Architecture 38
4 Experimental Preparation52
4.1 Process Design for Device Fabrication 52
4.2 Process Flow 55
4.3 Investigations on Sample Cross-sections 60
5 Measurement Results and Discussions 69
5.1 Characteristics of BSSI Programming Gate Current 69
5.2 Effects of Process Variations 72
5.3 Sharing Select Gate Design 74
5.4 Flash Memory Characteristics 75
6 Conclusion 97
References 99
[1]Yong-Sik Yim, et. al, “70nm NAND Flash Technology with 0.025m2 Cell Size for 4Gb Flash Memory” in IEEE International Electron Device Meeting, p.819, 2003
[2]P Pavan, R Bez, P Olivo, E Zanoni, “Flash Memory Cells – An Overview” Proceedings of the IEEE, Vol.85, No.8, August, 1997
[3]M.Lenzlinger and E.H.Snow, "Fowler-Nordheim tunneling into thermally grown SiO2," Journal of Applied Physics, vol.40, no.1, p.278-p.283, 1969
[4]Z.A.Weinberg, "On tunneling in MOS structure, " Journal of Applied Physics, vol.53, p.5052, 1982
[5]B.Ricco and M.V.Fischetti, "Temperature dependence of the currents in silicon dioxide in the high field tunneling regime," Journal of Applied Physics, vol.55, p.4322, 198
[6]P. E. Cottrell, R. R. Troutman, and T. H. Ning, "Hot-electron emission in n-channel IGFET," IEEE Transaction on Electron Devices, vol. ED-26, no. 4, pp. 520-532, 1979.
[7]C.Hu, "Lucky-electron model of hot-electron emission," in IEEE International Electron Device Meeting, p.22-p.25,1979
[8]Gautam Verma and Neal Mielke, “Reliability performance of ETOX based Flash memories,” International Reliability Physics Symposium, pp. 158-166, 1988.
[9]Stefan Lai, “Tuunel oxide and ETOX Flash scaling limitation,” Int’l Nonvolatile Memory Technology Conference, pp. 6-7, 1998.
[10]Kuniyoshi Yoshikawa, Seiichi Mori, Eiji Sakagami, Yoichi Ohshima, Yukio Kaneko, and Norihisa Arai, “Lucky-hole injectio induced by band-to-band tunneling leakage in stacked gate transistors,” IEEE International Electron Device Meeting, pp. 577-580, 1990.
[11]S. Kobayashi et al., “A 3.3V only 16Mb DINOR Flash memory,” International Solid State Circuit Conference, pp. 122-123, 1995.
[12]Shin-ichi Kobayashi, Hiroaki Nakai, Yuichi Kunori, Takeshi Nakayama, Yochikazu Miyawaki, Yasushi Terada, Hiroshi Onoda, Natsuo Ajika, Masahiro Hatanaka, Hirokazu Miyoshi, and Tsutomu Yoshihara, “Memory array architecture and decoding scheme for 3V only sector erasable DINOR Flash memory,” IEEE Journal of Solid State Circuits, vol. 29, No. 4, pp. 454-460, 1994.
[13]N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash memory enhancing erase/write cycling endurance characteristics,” IEEE International Electron Device Meeting, pp. 53-56, 1994.
[14]K. S. Kim et al., “A novel dual string NOR (DuSNOR) memory cell technology scalable to the 256Mbit and 1 Gbit Flash memories,” IEEE International Electron Device Meeting, pp. 263-266, 1995
[15]F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirora,”New ultra high density EPROM and Flash EEPROM with NAND structure cell,” IEEE International Electron Device Meeting, pp. 552-555, 1987.
[16]R. Shirota, R. Nakayam, R. Kirisawa, M. Momodomi, K.Sakui, Y.Itoh, S. Aritome, T.Endoh, F. Hatari, and F. Masuoka, “A 2.3m2 memory cell structure for 16Mb NAND EEPROMs,” IEEE International Electron Device Meeting, pp. 103-106, 1990.
[17]R. Kirisawa, S. Aritome, R. Nakayama, T. Endoh, R. Shirota, and F. Masuoka, “A NAND structured cell with a new programming technology for highly reliable 5V-only Flash EEPROM,” IEEE Symposium on VLSI Technology, pp. 129-130, 1990.
[18]B. Guillaumot, H. Achard, P. Candelier, S. Deleonibus, F. Martin, “Flash EEPROM cells using shallow trench isolation,” Int’l Nonvolatile Memory Technology Conference, pp. 74-75, 1996.
[19]Seiichi Aritome, Yuji Takeuchi, Shinji Sato, Hiroshi Watanabe, Kazuhiro Shimizu, Gertjan Hemink, and Riichiro Shirota, “A novel side-wall transfer0transistor cell (SWATT cell) for multilevel NAND EEPROMs,” IEEE International Electron Device Meeting, pp. 275-278, 1995.
[20]Kenichi Imamiya, Yoshihisa Sugiura, Hiroshi Nakamura, Toshihiko Himeno, Ken Takeuchi, Tamio Ilehashi, Kazushige Kanda, Koji Hosono, Riichiro Shirota, Seiichi Aritome, Kazuhiro Shimizu, Kazuo Hatakeyama, Koji Sakui, “A 130mm2 256Mb NAND Flash with shallow trench isolation technology,” International Solid State Circuit Conference, pp. 112-113, 1999.
[21]Kato M. et al. “A 0.4□m2 self-aligned contactless memory cell technology suitable for 256-Mbit Flash memories,” IEDM Technical Digest, paper 3.8, p.921
[22]B. Eitan et al.,”Alternate metal virtual ground (AMG)-A new scaling concept for very high-density EPROM’s,” IEEE Electron Device Letter vol.12, No.9, pp. 450-452, 1991.
[23]A. Bergemont, H. Haggag, L. Anderson, E. Shacham, and G. Wolstenholme, “NOR virtual ground (NVG)—A new scaling concept for very high density Flash EEPROM and its implementation in a 0.5m process,” IEEE International Electron Device Meeting, pp. 15-18, 1993.
[24]K.Naruke, S. Yamada, E. Obi, S. Taguchi, and M. Wada, “A new flash-erase EEPROM cell with a sidewall select-gate on its source side,” in IEDM Tech. Dig., p.603-p.606, 1989.
[25]Sohrab Kianian, Amitay Levi, Dana Lee, and Yaw-Wen Hu, “A novel 3 volt-only, small sector erase, high density Flash E2PROM,” in Proc. Symp. on VLSI Technology, p.71-p.72, 1994.
[26]Jan Van Houdt, Luc Haspeslagh, Dirk Wellekens, Ludo Deferm, Guido Groeseneken, and Herman E. Maes, “HIMOS-a high efficiency Flash E2PROM cell for embedded memory applications,” IEEE Trans. Electron Devices, vol.ED-40, no.12, p.2255-p.2263, 1993.
[27]Jan F. Van Houdt, Guido Groeseneken, and Herman E. Maes, “An analytical model for the optimization of source-side injection Flash EEPROM devices,” IEEE Trans. Electron Devices, vol.ED-42, no.7, p.1314-p.1319, 1995.
[28]Jan F. Van Houdt, Dirk Wellekens, Guido Groeseneken, and Herman E. Maes, “Investigation of the soft-write mechanism in source-side injection Flash EEPROM devices,” IEEE Electron Device Lett., vol.EDL-16, no.5, p.181-p.183, 1995.
[29]Dirk Wellekens, Jan Van Houdt, Lorenzo Faraone, Guido Groeseneken, and Herman E. Maes, “Write/erase degradation in source side injection Flash EEPROM’s: characterization techniques and wearout mechanisms,” IEEE Trans. Electron Devices, vol.ED-42, no.11, p.1992-p.1998, 1995.
[30]Donato Montanari, Jan Van Houdt, Dirk Wellekens, Guido Vanhorebeek, Luc Haspeslagh, Ludo Deferm, Guido Groeseneken, andd Herman E. Maes, “Voltage variant source side injection for multilevel charge storage in Flash EEPROM,” IEEE Trans. Components,Packaging, and Manufacturing Tech., Part A, vol.20, no.2, p.196-p.201, 1997.
[31]J. De Blauwe, D. Wellekens, G. Groeseneken, L. Haspeslagh, J. Van Houdt, L. Deferm, and Herman E. Maes, “High-temperature reliability behavior of SSI-Flash E2PROM devices,” in IEDM Tech. Dig., p.93-p.96, 1997.
[32]J. De Blauwe, Dirk Wellekens, Guido Groeseneken, Luc Haspeslagh, Jan Van Houdt, Ludo Deferm, and Herman E. Maes, “Read-disturb and endurance of SSI-Flash E2PROM devices at high operation temperatures,” IEEE Trans. Electron Devices, vol.ED-45, no.12, p.2466-p.2474, 1998.
[33]S. Ogura et. al., “Low voltage, low current, high speed program step split gate cell with ballistic direct injection for EEPROM/flash,” in IEDM Tech. Dig., 1998, pp. 987-990.
[34]T. Saito, et. al., “Split gate cell with phonon assisted ballistic CHE injection” in Proc. Symp. on VLSI Technology, p.126, 2000.
[35]Kobayashi, T., Sasago, Y., Kurata, H., Saeki, S., Goto, Y., Arigane, T., Okuyama, Y., Kume, H., Kimura, K., “A giga-scale assist-gate (AG)-AND-type flash memory cell with 20-MB/s programming throughput for content-downloading applications,” in IEDM Tech. Dig., 2001, pp. 2.2.1-2.2.4
[36]Sasago, Y., Arigane, T., Kurata, H., Saeki, S., Goto, Y., Kamohara, S., Kobayashi, T., Kume, H., “10-MB/s multi-level programming of Gb-scale flash memory enabled by new AG-AND cell technology,” in IEDM Tech. Dig., 2002, pp. 952-954.
[37]Jonghan Kim, Jeong-Hyuk Choi, Yong-Ju Choi, Hun-Kyu Lee, Kyeong- Tae Kim and Yun-Seung Shin, “A Novel 4.6F2 NOR Cell Technology With Lightly Doped Source (LDS) Junction For High Density Flash Memories.” in IEDM Tech. Dig., p.979-p.982, 1998.
[38]K. Shimizu, K. Narita, H. Watanabe, E. Kamiya, Y. Takeuchi, T. Yaegashi, S, Aritome and T. Watanabe “A Novel High-Density 5F2 NAND STI Cell Technology Suitable for 256Mbit and lG bit Flash Memories.” IEDM Tech. Dig., p.271-p.274, 1997.
[39]Y. Yamauchi, M. Yoshimi, S. Sato, H. Tabuchi, N. Takenada, and K. Sakiyam, “A new cell structure for sub-quarter micron high density Flash memory,” IEDM Tech. Dig., pp. 267–270, 1997
[40]Sameer Haddad, Chi Chang, Arthur Wang, J. Bustillo, J. Lien, T. Montalvo, and M. Van Buskirk., “An investigation of Erase Mode Dependent Hole Trapping in Flash EEPROM Memory Cell.” IEEE Electron Device Letters, P.514, Vol. 11, NO. 11, November 1990
[41]Sameer Haddad, Chi Chang, Balaji Swaminathan and Jih Lien., “Degradations Due to Hole Trapping in Flash Memory Cells.” IEEE Electron Device Letters, P.117, Vol. 10, NO. 3, March 1989
[42]R. Kirisawa, S. Aritome, R. Nakayama, T. Endoh, R. Shirota, and F. Masuoka, “A NAND structured cell with a new programming technology for high reliable 5V-only Flash EEPROM,” Symp. VLSI Tech. Dig., pp. 129-130, June 1990.
[43]S. Aritome, R. Shirota, R. Kirisawa, T. Endoh, R. Nakayama, K. Sakui, and F. Masuokas, “A reliable bi-polarity write/erase technology in Flash EEPROM,” IEDM Tech. Dig., pp. 111-114,, 1990
[44]D. B. Kao, J. P. Mcvittie, W.D. Nix, and K.C. Sarawat., “Two-Dimensional Thermal Oxidation of Silicon- I. Experiments,” IEEE Trans Elec. Dev., vol. ED-34, 1987, p.1008
[45]D. B. Kao, J. P. Mcvittie, W.D. Nix, and K.C. Sarawat., “Two-Dimensional Thermal Oxidation of Silicon- II. Modeling Stress Effects in Wet Oxides,” IEEE Trans Elec. Dev., vol. ED-35, 1988, p.25
[46]T. Kamins, Polycrystalline Silicon for Integrated Circuit Applications, 2d ed., Kluwer Academic Publishers, 1998
[47]Y. Wang, J. Tao, S. Tong, T. Sun, A. Zhang, S. Feng, “The Oxidation Kinetics of Thin Polycrystalline Silicon Films,” J. Electronchem. Soc., 138, 214 (1991)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *