帳號:guest(18.226.159.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳燦耀
作者(外文):Chen, Tsan-Yao
論文名稱(中文):Development of Multi-element Nanocatalysts and Nanocomposites for Direct Methanol Fuel Cell and Advanced Eenergy Applications
論文名稱(外文):發展多元奈米觸媒粒子及奈米複合材料及應用於直接甲醇燃料電池等能源相關科技應用
指導教授(中文):林滄浪
指導教授(外文):Lin, Tsang-Lang
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:913134
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:236
中文關鍵詞:奈米複合材料直接甲醇燃料電池奈米觸媒生物燃料電池染料敏化太陽能電池X 光吸收光譜小角度X 光散射
外文關鍵詞:nanocompositedirect methanol fuel cellnanocatalystbio-fuel cellsolar cellX-ray absorption spectroscopicsmall angle x-ray scattering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:105
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
In this thesis, three types of hybrid nanocomposites including nanocatalysts-carbon nanotube, metal-silica-polymer porous materials, and metal nanowire/titanium oxide nanoparticle electrode were developed for the applications of direct methanol fuel cell (DMFC), direct glucose bio-fuel cell (DGBFC), and dye-sensitized solar cell (DSSC), repectively. The DMFC electrode was fabricated by combining the nanocatalysts synthesis, multi-walled carbon nanotube (MWCNT) growth, MWCNT surface functionalization treatments, and the nanocatalysts dispersion techniques. The output power of the fabricated DMFC stack with Pt nanocatalysts dispersed on MWCNT by surface modification treatment as the electrode of the membrane-electrolyte-assembly (MEA) was improved by more than 300% (from 4.6 to 20.1 mW/cm2). For the applications in DSSC, in order to improve the electron conduction, TiO2 coated silver nanowires were added in the TiO2 electrode thin film at silver nanowires ~1.4 – 1.5 wt% and conventional titanium oxides nanoparticles P25 at ~98 wt%. Photo-excited electrons can be efficiently transferred to the electrode through the network of the dispersed metallic nanowires added in the anode. We compared the photovoltaic performance with the anodes of standard P-25, the silver nanowire/P-25, and the TiO2 coated silver nanowire/P-25 DSSC. The DSSC with TiO2 coated silver nanowires shows significantly improved (about 1.5 and 2.0 times) photovoltaic efficiency and structural durability compared with that of the standard P-25 and the silver nanowires without coating DSSC. The TiO2 coated silver nanowire can resist the redox chemical corrosions by iodide ions since they are protected from contact with electrolytes during the photovoltaic reaction by the coated thin TiO2 layer. The presence of the metal network (silver nanowires) improves the production and transportation of light generated current so as to the photovoltaic efficiency. For Developing bio-friendly composites as the anode for supporting enzyme is the main research goal in DGBFC researches. A low metal loading (~10 – 15%) and highly conductive hybrid porous nanocomposite containing polyvinylpyrrolidone, silica, and Ag was synthesized using a novel solid-state polyol reduction process. This hybrid nanocompsoite was initially solidified by sol-gel reaction then heat-treated at 160˚C in ambient environment. The dark-glassy transparent hybrid nanocompsoite turned into silver reflective appearance after the heat-treatment. The resulted solid film showed drasmatic increase in electrical conductivity by about 5 millions folds. The synthesized nanocomposite can be used as a new silica-based electronic conductor with low metal loading and bulk density.
本研究論文主軸為開發可應用於先進能源科技(如甲醇氧化燃料電池、生物燃料電池以及太陽能電池)之金屬-碳/矽/鈦氧化物奈米複合材料。研究進程包含整合材料設計、製造方法、元件組裝與結構、特性分析等步驟。內容包含三項奈米複合材料之系統分別為:1.可應用於甲醇氧化燃料電池(Direct Methanol Fuel Cell, DMFC)之奈米金屬觸媒粒子/奈米碳管複合結構; 2.可應用於生物燃料電池(Direct Glucose Bio-Fuel Cell, DGBFC)之多孔隙奈米金屬/矽氧化物複合結構; 以及3.可應用於太陽光-電能轉化電池(Dye Sensitize Solar Cell, DSSC)之奈米金屬/鈦氧化物複合結構。
在DMFC系統中,控制金屬奈米觸媒粒子之原子結構、製做具有多孔隙導電電極以及改善觸媒粒子在與電極材料上之分散性、附著性將為提升元件工作效率之關鍵因素。其中金屬奈米粒子之原子結構以改變反應組成與反應程序等規畫方法控制,結果顯示白金/銠(Pt/Ru)之雙元奈米粒子之尺寸隨白金組成增加。改變反應組成可製備雙元合金系統,其中白金原子傾向分布在粒子表面隨組成增加逐步主導粒子之晶體結構。改變反應程序則可製作具有白金殼-銠核結構之雙元奈米粒子,其白金原子將透過兩種化學反應在銠顆粒表面成長:1.白金離子受熱活化之乙二醇分子(醛基)在銠顆粒表面還原; 2.白金離子以氧化電位差與銠金屬原子發生交換反應還原在顆粒表面。DMFC的陽極系統利用奈米金屬觸媒粒子在奈米碳管表面分散製做,過程輔以碳管表面硫化改質技術顯著提升觸媒粒子之表面之分散性使得全電池輸出功率得以提升300%以上(由4.6到20.1 mW*cm-2, 金屬含量約0.5 mg*cm-2)。
複合材料在染料敏化太陽能電池之應用則著墨在開發具有高導電性、持久化學穩定性之陽極結構。系統中陽極為光-電化學轉換層其厚度約為10微米:其組成為銀金屬奈米線(AgNWs)、商用鈦氧化物奈米粉(P25)以及銠錯合鹽離子基組成的光染劑(N3 dye),電解質則為慣用的碘-碘離子溶液(I-I3-),陽極背基板為導電玻璃(FTO)。經由表面改質技術處理後,改質金屬奈米線(AgNWs@TiO2)的添加(約1.6 wt%)可使陽極複合結構(AgNWs@TiO2/P25)之工作效率相對於標準電極(由同厚度之P25鍍膜)約提升200%(由2.2 到4.2 %)、相對於含有未改質金屬奈米線的陽極提升約35%,此外表面改質可使得陽極工作電流得以在二十分鐘內穩定維持(僅下降~5.0 - 6.0%,由11.4 – 10.9 mA*cm-2)。
奈米金屬-矽氧化物複合材料則在結合溶膠凝膠法合成之結構中以多醇反應將金屬還原合成,製做含有12-15 wt%金屬的奈米金屬-矽氧化物-高分子複合材料。流程中將高分子材料與金屬鹽溶液、醇類、矽氧化物溶膠混合,於第一階段進行水解反應使矽氧化物形成凝膠將金屬鹽類與水、醇等溶液侷限在內部之奈米孔隙中,隨後在定溫控制濕度系統中將凝膠內水分子緩慢揮發使金屬鹽得以由水-醇介面轉換到醇溶液相。待乾燥完成後,樣品置入定溫系統以攝氏160度進行熱處理使醇類活化對金屬離子進行還原作用,過程中金屬奈米結構將緩慢在材料內外之奈米孔徑內還原成為緊密連結的奈米金屬結構。經過熱處理之材料其薄膜阻抗(sheet resistance)可顯著降低約105倍(由~25.0降低至3*10-3 歐姆/平方)。
Abstract …………………………………………………………………i

Acknowledgement ………………………………………………………iv

Table of Contents……………………………………….…………….v

Figure captions…………….……………………………………….vii

Table list ……………………………………………………………xiv

Chapter 1 Introduction….........................…………..1
1.1 Objectives……………..………………….……………………1
1.2 Research background……………………………………………2

Chapter 2 Literature Review……….………………….……………7
2.1 Nanocomposites for Fuel cell system………………………7
2.2 Nanocomposites for Bio-Fuel cell system……………...19
2.3 Nanocomposites for solar cell application…….…....21

Chapter 3 Synthesis and Characterization Methods….……….23
3.1 Characterizations overview…………….………………….23
3.2 Spectroscopic characterizations………...……………..25
3.2.1 Two-dimensional X-ray diffraction (XRD2)……………25
3.2.1a XRD2 measurements….………………….…………………25
3.2.1b Fundamentals of XRD2………………….…………………25

3.2.2 Small-angle X-ray scattering (SAXS)………………….35
3.2.2a SAXS measurement……………………...…………………35
3.3.2b Fundamental of SAXS………………….………………….35
3.3.2c SAXS fitting models…………………..…………………42

3.2.3 X-ray absorption spectroscopic (XAS)………………..47
3.2.3a XAS measurement and data interpretation…………..47
3.2.3b XAS basic………………………………….……………….47
3.2.3c XAS data interpretation……….……….………………51

3.3 Microscopic characterizations………………….…………54
3.3.1 Scanning electron microscopy (SEM)….……….………54
3.3.2 Transmission electron microscopy (TEM)……………..55

3.4 Methods of synthesis …...…..……………………………58
3.4.1 Overview….………………………………….………………58
3.4.2 Materials, Equipments, and Methods…………………..59

Chapter 4 Synthesis and Characterization of Alloy and Core-shell Ru-Pt Nanocatalysts for Fuel Cell Applications.…….65
4.1 Binary nanoparticles in alloy structure…….………..65
4.2 Binary nanoparticles in core-shell structure….…….88
4.3 Surface modification on alloyed
binary nanoparticles...............................112
4.4 Oxidation induced segregation on alloyed binary
nanoparticles……................................…125

Chapter 5 Pt Nanocatalysts Supported on Carbon
Nanomaterials as the Anode for Direct Methanol
Fuel Cell Applications ……………………........154
5.1 Synthesis of carbon nanotube on flexible carbon cloth
as fuel cell anode………………………….………………154
5.2 Surface modification of CNT electrode for improving
the fuel cell performance…………………………………166

Chapter 6 Polymer-Metal-Silica Nanocomposites as the Anode
for Bio-Fuel Cell Applications..………….………182

Chapter 7 Metal–titanium oxide nanocomposites as anode for
solar cell application….....................…194

Chapter 8 Conclusions..……………………………………………207

Chapter 9 Future works…...…………………...……………….210

List of publishcations.……………………………………………212

Reference………………………………………………………………213

Appendix I…………………………...………………..……………220

Appendix II…………..………………………………………………227
1. Ruiz-Hitzky, E.; Darder, M.; Aranda, P., Journal of
Materials Chemistry 2005,15, 3650-3662.
2. Ruiz-Hitzky, E.; Darder, M.; Aranda, P., An Intorduction
to Bio-nanohybrid Materials. In Bio-inorganic Hybrid
Nanomaterials. Wiley-VCH: Weinheim, 2008.
3. Vang, R. T.; Honkala, K.; Dahl, S.; Vestergaard, E. K.;
Schnadt, J.; Laegsgaard, E.; Clausen, B. S.; Norskov, J.
K.; Besenbacher, F., Nature Materials 2005, 4,160-162.
4. Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G.
C.; Kundaliya, D.; Ying, J. Y., J. Am. Chem. Soc. 2005,
127, 4990-4991.
5. Toshima, N. T., New J. Chem. 1998, 22, 1179-1201.
6. Ramachandra Rao, C. N.; Kulkarni, G. U.; Thomas, P. J.;
Edwards, P. P., Chemical Society Reviews 2000, 29, 27-35.
7. Schmid, A. K.; Bartelt, N. C.; Hwang, R. Q., Science
2000, 290, 1561-1564.
8. Smith, D. D.; Snow, L. A.; Sibille, L., J Non-Cryst
Solids 2001, 285, 256–263.
9. Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.;
Kubota, Y.; Fujishima, A., Nature Materials 2003, 2, 29–
31.
10. Lalan, S.; Pomerantseva, I.; Vacanti, J., World Journal
of Surgery 2001, 25 (11), 1458-1466.
11. Hench, L. L., Biomaterials 1998, 19, 1419.
12. Simpson, T. L.; Volcani, B. E., Silicon and Siliceous
Structures in Biological Systems. Springer: New York,
1981.
13. Luo, T.-J. M.; Soong, R. K.; Lan, E.; Dunn, B.;
Montemagno, C., Nature Materials 2005, 4, 220-224.
14. Gill, I., Chem Mater 2001, 13, 3404–3421.
15. Bharathi, S.; Lev, O., Chem Commun 1997, 23, 2303–2304.
16. Bharathi, S.; Nogami, M., Analyst (Lond) 2001, 126,
1919-1922.
17. Claus, P.; Bruckner, A.; Mohr, C.; Hofmeister, H., J.
Am. Chem. Soc. 2000, 122, 11430–11439.
18. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn,
B., Nature Materials 2008, 7, 333-338.
19. Grätzel, M., Nature 2001, 414, 338-344.
20. Grätzel, M., Nature 2003, 421, 586-587.
21. Grätzel, M.; O'Regan, B., Nature 1991, 353, 737-740.
22. McFarland, E. W.; Tang, J., Nature 2003, 421, 616-618.
23. Würfel, P., Physics of Solar Cells; From Principles to
New Concepts. Wiley-VCH: Weinheim, 2005.
24. Nelson, J., "The Physics of Solar Cells," Chapter 1.
Imperial College Press: London, 2003.
25. Archer, M. D., Photoconversion of Solar Energy.
Imperial College Press: London, 2001; Vol. 1.
26. Green, M. A.; Emery, K.; L.;, K. D.; Igari, S.; Warta,
W., Prog. Photovolt. Res. Applic. 2001, 9, 49-56.
27. Goetzberger, A.; Hebling, C., Sol. Energy Mater. Sol.
Cells 2000, 62, 1-19.
28. Watanabe, M.; Motoo, S., J. Electroanal. Chem. 1975,
60, 267-273.
29. Besenbacher, F.; Chorkendorff, I.; Clausen, B. S.;
Hammer, B.; Molenbroek, A. M.; Norskov, J. K.;
Stensgaard, I., Science 1998, 279, 1913-1915.
30. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson,
J., Journal of Physics D: Applied Physics 2003, 36,
R167-R181.
31. Griffith, L. G.; Grodzinsky, A. J., The Journal of the
American Medical Association 2001, 285, 556-561.
32. Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H.
G., Nano Letters 2004, 4, 671-675.
33. Tanner, S. M.; Gray, J. M.; Rogers, C. T.; Bertness, K.
A.; Sanford, N. A., Applied Physics Letters 2007, 92,
203117.
34. Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S.,
Chemical Reviews 2004, (104), 4463.
35. Graham, J. B.; Pearce, M. E.; Salem, A. K., In Mixed
Metal Nanomaterials, Wiley-VCH: 2009.
36. http://en.wikipedia.org/wiki/Main_Page / search.
37. Blomen, L. J. M. J.; Mugerwa, M. N., Fuel Cell Systems.
Plenum Press: New York 1993.
38. Larminie, J.; Dicks, A., Fuel Cell Systems Explained.
Wiley: New York 2000.
39. Chen, C.-C.; Chen, C.-F.; Chen, C.-M.; Chuang, F.-T.,
Electrochemistry Communications 2007, 9, 159-163.
40. Wu, F.-C.; Chen, T.-Y.; Wan, C.-C.; Wang, Y.-Y.; Lin,
T.-L., Electrochemical and Solid-State Letters 2006, 9
(12), A549-A551.
41. Nam, J.-H.; Jang, Y.-Y.; Kwon, Y.-U.; Nam, J.-D.,
Electrochemistry Communications, 2004, 7, 737-741.
42. Camara, G. A.; Giz, M. J.; Paganin, V. A.; Ticianelli,
E. A., Journal of Electroanalytical Chemistry 2002,
537, 21-29.
43. Hogarth, M. P.; Ralph, T. R., Platinum metals rev.
2002, 46.
44. Beden, B.; Lamy, C.; Bewick, A.; Kunimatsu, K., J.
Electroanal. Chem. 1981, 121, 343.
45. Cathro, K. J., J. Electrochem. Soc. 1969, 116, 1608
46. Beden, B.; Kadirgan, F.; Lamy, C.; Leger, J. M., J.
Electroanal. Chem. 1981, 127, 75.
47. Morimoto, Y.; Yeager, E. B., J. Electroanal. Chem.
1998, 444, 95.
48. Swathirajan, S.; Mikhail, Y. M., J. Electrochem. Soc.
1991, 138, 1321.
49. Kadirgan, F.; Beden, B.; Leger, J. M.; Lamy, C., J.
Electroanal. Chem. 1981, 125, 89.
50. Hamnett, H.; Kennedy, B. J., Electrochim. Acta. 1988,
33, 1613.
51. Zhu, Y.; Cabrera, C. R., Electrochem, Solid-State Lett.
2001, 4, A45.
52. Kim, Y. T.; Mitani, T., J. Catal. 2006, 238, 394.
53. Liu, D.-G.; Lee, J.-F.; Tang, M.-T., Journal of
Molecular Catalysis A: Chemical 2005, 240, 197-206.
54. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.;
Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang,
M.-T., J. Am. Chem. Soc. 2005, 127, 11140-11145.
55. Nashner, M. S.; Frenkel, A. I.; Somerville, D.; Hills,
C. W.; R.;, S. J.; Nuzzo, R. G., J. Am. Chem. Soc.
1998, 120, 8093-8101.
56. Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.;
Vardeman II, C. F.; Gezelter, J. D., J. Am. Chem. Soc.
2002, 124, 11989-11996.
57. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Journal
of Physical Chemistry 1995, 99, 16757-16767.
58. Roth, C.; Benker, N.; Buhrmester, T.; Mazurek, M.;
Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker,
D. E., J. Am. Chem. Soc. 2005, 127 (42), 14607-14615.
59. Schlapka, A.; Lischka, M.; Groß, A.; Ka¨sberger, U.;
Jakob, P., Phys. Rev. Lett. 2003, 91 016101.
60. Huang, S. Y.; Chang, S. M.; Yeh, C. T., J. Phys. Chem.
B 2006, 110 234-239.
61. Huang, S. Y.; Chang, C. M.; Wang, K. W.; Yeh, C. T.,
ChemPhysChem 2007, 8, 1774-1777.
62. Watanabe, M. U., M.; Motoo, S.;, J. Electroanal. Chem.
1987, 229 395-406.
63. Jeng, U.-S.; Lai, Y.-H.; Sheu, H.-S.; Lee, J.-F.; Sun,
Y.-S.; Chuang, W.-T.; Huang, Y.-S.; Liu, D.-G., J.
Appl. Cryst. 2007, 40, s418–s422.
64. Chen, T., -Y.; ; Lin, T.-L.; Mark;, L. T.-J.; Choi, Y.;
Lee, J.-F., submit to Journal of advnaced synthesis and
catalysis 2009. 65. Darder, M.; Aranda, P.; Ruiz-
Hitzky, E., Advanced Materials 2007, 19, 1309-1319.
66. Dujardin, E.; Mann, S., Advanced Materials 2002, 14,
775-788.
67. Tain, Y.; Tatsuma, T., J. Am. Chem. Soc. 2005, 127,
7632-7637.
68. Férey, G., Chemical Society Reviews 2007, 37, 191–214.
69. Qiu, L. G.; Xie, A. J.; Zhang, L. D., Angew. Chem.,
Int. Ed. 2004, 43, 2684–2687.
70. Hermes, S.; Schrö ter, M.-K.; Schmid, R.; Jhodeir, L.;
Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R.
A., Angew. Chem., Int. Ed. 2005, 44, 6237.
71. Weyl, W. A., Coloured Glasses. Sheffield Soc. Glass
Tech.: 1951.
72. Carpenter, J.; Lukehart, C.; Milne, S.; Henderson, D.;
Mu, R.; Stock, S., Chem Mater 1997, 9, 3164–3170.
73. Bharathi, S.; Fishelson, N.; Lev, O., Langmuir 1999,
15, 1929-1937.
74. Anderson, M. M., C.; Stroud, R.; Merzbacher, C.;
Rolison, D.;, Langmuir 1999, 15, 674-681.
75. Wallace, J.; Rice, J.; Pietron, J.; Stroud, R.; Long,
J.; Rolison, D., Nano Letters 2003, 3, 1463.
76. Ounaies, Z., Park, C., Wise, K.E., Siochi, E.J., and
Harrison, J.S.;, Comp. Sci. Technol 2003, 63, 1637-1646.
77. Yang, W.; Trau, D.; Renneberg, R.; Yu, N. T.; Caruso,
F., J.;, Colloid Inter. Sci. 2001, 234, 356-362.
78. Choi, Y.-J.; Huh, U.; Luo, T.-J. M., J Sol-Gel Sci
Technol 2009.
79. Hornebecq, V.; Antonietti, M.; Cardinal, T.; Treguer-
Delapierre, M., Chem Mater 2003, 15, 1993–1999.
80. Jin, R.-H.; Yuan, J.-J., Journal of Materials Chemistry
2005, 15, 4513-4517.
81. Verghese, M.; Ramanathan, K.; Ashraf, S.; Kamalasanan,
M.; Malhotra, B., Chem Mater 1996, 8, 822–824.
82. Walsh, D.; Arcel, L.; Ikoma, T.; Tanaka, J.; Mann, S.,
Nature Materials 2003, 2, 386.
83. Tappan, B. C.; Huynh, M. H.; Hiskey, M. A.; Chavez, D.
E.; Luther, E. P.; Mang, J. T.; Son, S. F., J. Am.
Chem. Soc. 2006, 128, 6589-6594.
84. Zhang, X. F.; Harley, G.; Jonghe, L. C. D., Nano
Letters 2005, 5, 1035-1037.
85. Fievet, F.; Lagier, J. P.; Figlarz, M., MRS Bull. 1989,
24, 29.
86. Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y.,
Chem. Mater. 2002, 14, 4736-4745.
87. Sun, Y.; Xia, Y., Adv. Mater 2002, 14, 833.
88. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., J. Appl.
Phys. 1954, 25, 676-677.
89. Bard, A. J., Science 1989, 207, 139.
90. Memming, R., Phil. Tech. Rev. 1979, 38, 160.
91. Nozik, A. J., Phil. Trans. R. Soc. Lond. 1980, A295,
453-470.
92. Heller, A., Acc. chem. Res. 1981, 14, 154-162.
93. Wrighton, M. S., Acc. chem. Res. 1979, 12, 303-310.
94. Honda, K.; Fujishima, A., Nature 1972, 238, 37-39.
95. Tufts, B. J.; al., e., Nature 1987, 326, 681-683.
96. Licht, S.; Hodes, G.; Tenne, R.; Manassen, J., Nature
1987, 326, 863-864.
97. Barazzouk, S.; Hotchandani, S., J. Appl. Phys. 2004,
96, 7744-7746.
98. He, B. B.; Preckwinkel, U.; Smith, K. L., Advances in X-
ray Analysis 43, 273-280.
99. Sulyanov, S. N.; Popov, A. N.; Kheiker, D. M., J. Appl.
Cryst. 1994, 27, 934-942.
100. Smith, K. L.; Ortega, R. B., Advances in X-ray
Analysis 1993, 36, 641-647.
101. He, B. B.; Smith, K. L. In Fundamental Equation of
Strain and Stress Measurement Using 2D Detectors, SEM
Spring Conference on Experimental and Applied
Mechanics, Houston, Texas, USA, Houston, Texas, USA,
1998.
102. He, B. B.; Preckwinkel, U.; Smith, K. L. In Advantages
of Using 2D Detectors for Residual Stress
Measurements, Advances in X-ray Analysis, 47th Annual
Denver X-ray Conference, Colorado Springs, Colorado,
USA, Colorado Springs, Colorado, USA, 1998.
103. Jakob, H. F.; Tschegg, S. E.; Fratzl, P., J. Struct.
Biology 1994, 113, 13-22.
104.Guinier, A.; Fournet, G., Small-angle scattering of x-
rays. John Wiley: New York, 1955.
105. Lin, J. M.; Lin, T.-L.; Jeng, U.-S.; Zhong, Y.-J.;
Yeh, C.-T.; Chen, T.-Y., J. Appl.
Cryst. 2007, 40, s540-s543.
106. Bartlett, P.; Ottewill, R. H., J. Chem. Phys. 1992,
96, 3306.
107. Hayter, J., Physics of Amphiphiles-Micelles, Vesicles
and Microemulsions. 1983.
108. Chen, S.-H.; Teixeira, J., Phys. Rev. Lett. 1986, 57,
2583-2586.
109. Guo, X. H.; Zhao, N. M.; Chen, S.-H.; Teixeira, J.,
Biopolymers 1990, 29, 335-346.
110. Chen, S.-H.; Lin, T.-L., Methods of Experimental
Physics - Neutron Scattering in Condensed Matter
Research. Academic Press.: New York, 1987; Vol. 23.
111. Sheu, E. Y., Phys. Rev. A, 45, 1992, 2428-2437.
112. Lytle, F. W.; Greegor, R. B.; Sandstorm, D. R.;
Marques, E. C.; Wong, J.; Sprio, C. L.; Huffman, G.
P.; Huggins, P. E., Nucl. Instrum. Meth. Phys. Res.
Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 1984,
226, 542-548.
113. Stern, E. A., THeory of EXAFS. In X-ray Absorption
Principles, Applications, Techniques of EXAFS, SEXAFS
and XANES, Koningsberger, D. C.; Prins, R., Eds.
John Wiley & Sons Inc.: 1998; pp 3-51.
114. Sayers, D. E.; Stern, E. A.; Lytle, F., Phys. Rev.
Lett. 1971, 27, 1204.
115. Enderby, J. E.; North, D. M.; Egelstaff, P. A.,
Philos. Mag. 1966, 14, 961.
116. Durham, P. J., XANES theroy. In X-ray Absorption:
Principles, Applications, Techniques of EXAFS, SEXAFS,
and XANES. John Wiley & Sons: New York, 1988.
117. Teo, B.-K.; Lee, P. A., J. Am. Chem. Soc. 1979, 101,
2815-2832.
118. Ravel, B. EXAFS Analysis Using FEFF and FEFFIT.
http://cars9.uchicago.edu/~ravel/talks/course/.
119. Ravel, B. EXAFS Analysis with FEFF and FEFFIT Part 2:
Commentary Version 0.05; April 12, 2001; pp 58-62.
120. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson,
S. D., Phys. Rev. B 1998, 58, 7565-7576.
121. Iwasawa, Y., X-Ray Absorption Fine Structure for
Catalysts and Surfaces,.
122. Vogel, W.; Britz, P.; Bönnemann, H.; Rothe, J.;
Hormes, J., Journal of Physical Chemistry B 1997, 101,
11029-11036
123. Sun, S.; Murray, C.; Weller, D.; Folks, L.; Moser, A.,
Science 2000, 287, 1989-1992.
124. Ma, J.-H.; Reng, S.-H.; Pan, D.-H.; Li, R.-F.; Xie, K.-
H., Reactive and Functional Polymers 2005, 62 (1), 31-
39.
125. Reng, S.-H.; Pan, D.-H.; Li, R.-F.; Xie, K.-H.,
Reactive and Functional Polymers 2005, 62 31-39.
126. Zhang, Y. Y.; G.-H.;; Li, X.-X.; Luo, W.; Huang, M.-
Y.; Jiang, Y.-Y., Polymers for Advanced Technologies
1997, 10 (1-2), 108-111.
127. Sun, Y.; Xia, Y., Science 2002, 13, 2176.
128. Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.;
Figlarz, M., Solid State Ion. 1989, 32-3, 198.
129. Chen, T.-Y., Appendix 1.
130. Newville, M., J. Synchrot. Radiat. 2001, 8, 322-324.
131. Newville, M.; Livins, P.; Yacoby, Y.; Rehr, J. J.;
Stern, E. A., Phys. Rev. B 1993, 47 (21), 14126-14131.
132. Ravel, B. N., M.;, J. Synchrot. Radiat. 2005, 12, 537-
541.
133. Rehr, J. J.; Albers, R. C., Phys. Rev. B 1990, 41
(12), 8139-8149.
134. Rehr, J. J.; Zabinsky, S. I.; Albers, R. C., Phys.
Rev. Lett. 1992, 69, 3397.
135. Rehr, J. J.; Mustre de Leon, J.; Zabinsky, S. I.;
Albers, R. C., J. Am. Chem. Soc. 1991, 113, 5135.
136. Mustre de Leon, J.; Rehr, J. J.; Zabinsky, S. I.;
Albers, R. C., Phys. Rev. 1991, B44, 4146.
137. Frenkel, A. I.; Machavariani, S. V.; Rubshtein, A.;
Rosenberg, Y.; Voronel, A.; Stern, E. A., Phys. Rev. B
2000, 62, 9364.
138. Yang, C. T.; Hsieh, S. H., Comput. Mech. 2005, 36 (2),
85-99.
139. JCPDS, #882343 and #882333.
140. Koper, M. T. M.; Van Santen, R. A., J. Electroanal.
Chem. 1999, 476 (1), 64-70.
141. Ruban, A. V.; Skriver, H. L.; Norskov, J. K., Phys.
Rev. B 1999, 59 (24), 15990-16000.
142. Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley,
J. R.; Nuzzo, R. G., J. Am. Chem. Soc. 1997, 119 (33),
7760- 7771.
143. Park, J.-I.; Kim, M.-G.; Jun, Y.-W.; Lee, J.-S.; Lee,
W.-R.; Cheon, J., J. Am. Chem. Soc. 2004, 126, 9072-
9078.
144. Watanabe, M.; Motoo, S., J. Electroanal. Chem. 1975,
60 (3), 275-283.
145. Huber, G. W.; Shabaker, J. W.; Dumesic, J. A., Science
2003, 300 (5628), 2075-2077.
146. Shao, Y. Y.; Yin, G. P.; Wang, Z. B.; Gao, Y. Z., J.
Power Sources 2007, 167 (2), 235-242.
147. Tong, Y. Y.; Kim, H. S.; Babu, P. K.; Waszczuk, P.;
Wieckowski, A.; Oldfield, E., J. Am. Chem. Soc. 2002,
124 (3), 468-473.
148. Han, B. C.; derVen, A. V.; Ceder, G.; Hwang, B.-J.,
Phys. Rev. B 2005, 72, 205409.
149. Christoffersen, E.; Stoltze, P.; Norskov, J. K., Surf.
Sci. 2002, 505 (1-3), 200-214.
150. Vidakovic, T.; Christov, M.; Sundmacher, K.,
Electrochim. Acta. 2007, 52 (18), 5606-5613.
151. Huang, S. Y.; Chang, C. M.; Yeh, C. T., J. Catal.
2006, 241 (2), 400-406.
152. Huang, S. Y.; Chang, S. M.; Lin, C. L.; Chen, C. H.;
Yeh, C. T., J. Phys. Chem. B 2006, 110 (46), 23300-
23305.
153. Rodriguez, J. A.; Goodman, D. W., Science 1992, 257,
897-903.
154. Lewera, A.; Zhou, W. P.; Vericat, C.; Chung, J. H.;
Haasch, R.; Wieckowski, A.; Bagus, P. S., Electrochim.
Acta 2006, 51, 3950-3956.
155. Wang, J. X.; Brankovic, S. R.; Zhu, Y.; Hanson, J. C.;
Adz˘ic´, R. R., Journal of The Electrochemical
Society 2003, 150, A1108. 218
156. Park, J.-I.; Kim, M. G.; Jun, Y.-W.; Lee, J. S.; Lee,
W.-R.; Cheon, J., J. Am. Chem. Soc. 2004, 126, 9072-
9078.
157. Roy, M.; Gurman, S. J.; Van Dorssen, G., Journal de
Physique IV 1997, 7 (C2), 151-152.
158. Schmid, G., Chem. Rev. 1992, 92, 1709-1727.
159. Davey, W. P., Phys. Rev. 1925, 25, 753.
160. Pecharsky, V., Fundamentals of Powder Diffraction and
Structural Characterization of Materials. Springer:
Berlin, 2005.
161. Kim, S.; Park, S.-J., J. Power Sources 2006, 159, 42-
45.
162. Kim, S.; Park, S.-J., Fuel Cell Research Trends. Nova
Science Publishers, Inc.: 2007.
163. Liu, Z.; al.;, e., J. Phys. Chem. B 2004, 108, 8234.
164. Wang, H.; al.;, e., J. Appl. Electrochem. 2001, 31,
759.
165. Seland, F. Electrochemical Oxidation of Methanol and
Formic Acid in Fuel Cell Processes. Norwegian
University of Science and Technology, Trondheim, 2005.
166. Lee, Y. J.; Yi, H.; Kim, W.-J.; Kang, K.; Yun, D. S.;
Strano, M. S.; Ceder, G.; Belcher, A. M., Science
2009, 324, 1051-1055.
167. Guo, Q.; Teng, X.-W.; Rahman, S.; Yang, H., J. Am.
Chem. Soc. 2003, 125, 630-631.
168. Herhold, A. B.; Tolbert, S. H.; Guzelian, A. A.;
Alivisatos, A. P., Fine Particles Science and
Technology. Kluver Academic: Dordrecht, 1996; Vol.
3/12.
169. Qi, W. H., Physica B: Condensed Matter 2005, 368, 46-
50.
170. Chen, C.-C.; Herhold, A. B.; Johnson, C. S.;
Alivisatos, A. P., Science 1997, 276, 398.
171. Riordan, M.; Hoddeson, L., Crystal Fire. . W.W. Norton
and Company: New York, 1997.
172. Meindl, J. D.; Chen, Q.; Davis, J. A., Science 2001,
293, 2044.
173. Riordan, M.; Hoddeson, L., Crystal Fire. W.W. Norton
and Company: New York, 1997.
174. Meindl, J. D.; Chen, Q.; Davis, J. A., Science 2001,
293, 2044.
175. Hogarth, M. P.; Ralph, T. R., Platinum Metals Rev.
2002, 46 (4), 117-135.
176. Besenbacher, F.; Chorkendorff, I.; Clausen, B. S.;
Hammer, B.; Molenbroek, A. M.; Nørskov, J.
K.; Stensgaard, I., Science 1998, 297, 1913-1915.
177. Adams, R. D.; Captain, B.; Smith, M. D.; Beddie, C.;
Hall, M. B., J. Am. Chem. Soc. 2007, 129, 5981-5991.
178. Urashima, Y., Mineral 1974, 7, 438.
179. Haines, J., Acta Crystallogr., Sec. B: Structural
Science 1997, 53, 880.
180. Cotton, F. A.; Mague, J. T., Inorganic Chemistry INOCA
1966, 5, 317-318.
181. Zhoua, W. J.; al.;, e., Journal of Power Sources 2004,
126, 16.
182. Roth, C.; Benker, N.; Buhrmester, T.; Mazurek, M.;
Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker,
D. E., J. Am. Chem. Soc. 2005, 127 (42), 14607-14615.
183. Vidakovic, T.; Christov, M.; Sundmacher, K.;
Nagabhushana, K. S.; Fei, W.; Kinge, S.; Bonnemann,
H., Electrochimica Acta 2007, 52, 2277-2284.
184. Garcia, B. L.; Captain, B.; Adams, R. D.; Hungria, A.
B.; Midgley, P. A.; Thomas, S. J. M.; Weidner, J. W.,
Journal of Cluster Science 2007, 18, 121-130.
185. Daniel, M. C.; Astruc, D., Chem. Rev. 2004, 104, 293-
346.
186. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.;
Adzic, R. R., Journal of Electroanalytical Chemistry
2002, 532, 57-66.
187. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.;
Lukehart, C. M., Journal of
Physical Chemistry B 2001, 105, 8097-8101.
188. Profeti, L. P. R.; Simoes, F. C.; Olivi, P.; Kokoh, K.
B.; Coutanceau, C.; Leger, J. M.; Lamy, C., Journal of
Power Sources 2006, 158, 1195-1201.
189. Stoupin, S.; Chung, E. H.; Chattopadhyay, S.; Segre,
C. U.; Smotkin, E. S., Journal of Physical Chemistry B
2006, 110, 9932-9938.
190. Ruban, A. V.; Skriver, H. L., Computational Materials
Science 1999, 15, 119-143.
191. Korzhavyi, P. A.; Abrikosov, I. A.; Johansson, B.;
Ruban, A. V.; Skriver, H. L., Physical Review B 1999,
59, 11693-11703.
192. Hwang, C. P.; Yeh, C. T., Journal of Catalysis 1999,
182, 48-55.
193. Liu, Y. T.; Wang, M. K.; Chen, T. Y.; Chiang, P. N.;
Huang, P. M.; Lee, J. F., Environmental Science &
Technology 2006, 40, 7784-7789.
194. Moore, W. J.; Pauling, Ÿ. L., Journal of the American
Chemical Society 1941, 63, 1392-1394.
195. Boman, C. E., Acta Chemica Scandinavica 1970, 24, 116.
196. Schmid, M.; Hofer, W.; Varga, P.; Stoltze, P.;
Jacobsen, K. W.; Norskov, J. K., Physical Review B
1995, 51, 10937-10946.
197. de Graaf, J.; van Dillen, A. J.; de Jong, K. P.;
Koningsberger, D. C., Journal of Catalysis 2001, 203,
307-321.
198. McBreen, J.; Mukerjee, S., Journal of the
Electrochemical Society 1995, 142, 3399-3404.
199. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen,
J., Journal of the Electrochemical Society 1995, 142,
1409-1422.
200. Viswanathan, R.; Hou, G. Y.; Liu, R. X.; Bare, S. R.;
Modica, F.; Mickelson, G.; Segre, C. U.; Leyarovska,
N.; Smotkin, E. S., Journal of Physical Chemistry B
2002, 106, 3458-3465.
201. Dicko, A.; Song, X. M.; Adnot, A.; Sayari, A., Journal
of Catalysis 1994, 150, 254-261.
202. Herron, M. E.; Doyle, S. E.; Pizzini, S.; Roberts, K.
J.; Robinson, J.; Hards, G.; Walsh, F. C., Journal of
Electroanalytical Chemistry 1992, 324, 243-258.
203. Martens, G.; Rabe, P.; Schwentner, N.; Werner, A.,
Physical Review Letters 1977, 39, 1411-1414.
204. Lee, P. A.; Beni, G., Physical Review B 1977, 15, 2862-
2883.
205. Ruban, A. V.; Skriver, H. L., Comput. Mater. Sci.
1999, 15 (2), 119-143.
206. Ruban, A. V.; Skriver, H. L.; Norskov, J. K., Phys.
Rev. B 1999, 59 (24), 15990-16000.
207. Christoffersen, E.; Stoltze, P.; Norskov, J. K., Surf.
Sci. 2002, 505 (1-3), 200-214.
208. Han, B. C.; Van der Ven, A.; Ceder, G.; Hwang, B. J.,
Phys. Rev. B 2005, 72 (20). 209. Brankovic, S. R.;
Marinkovic, N. S.; Wang, J. X.; Adzic, R. R., J.
Electroanal. Chem. 2002, 532 (1-2), 57-66.
210. Chen, C.-C.; Chen, C.-F.; Hsu, C.-H.; Li, I.-H.,
Relat. Mater. 2005, 14 (3-7), 770.
211. Chen, S.; Kimura, K., J. Phys. Chem. B 2001, 105 (23),
5397-5403.
212. Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K.,
J. Phys. Chem. B 2006, 110 (119), 5343.
213. Keszler, A. M.; Nemes, L.; Ahmad, S. R.; Fang, X.,
Journal of Optoelectronics and Advanced Materials
2004, 6 (4), 1269-1274.
214. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. H.,
Springer-Verlag: Berlin, 2001; Vol. 80.
215. Rao, A. M. R., E.; Bandow, S.; Chase, B. P.; Eklund,
P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.;
Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.
M.; Dresselhaus, S.;, Science 1997, 275, 187.
216. Keszler, A. M.; Nemes, L.; Ahmad, S. R.; Fang, X.,
Journal of Optoelectronics and Advanced Materials
2004, 6 (4), 1269 - 1274.
217. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. H.,
Carbon Nanotubes: Synthesis, Properties and
Applications In Topics in Applied Physics., Springer-
Verlag: Berlin, 2001; Vol. 80.
218. Rao, A. M.; Richter, E.; Bandow, S.; Chase, B. P.;
Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy,
K. R.; Menon, M.; Thess, A.; Smalley, R. E.;
Dresselhaus, G. M.; Dresselhaus, S., Science 1997,
275, 187
219. Lee, Y. D.; Lee, H. J.; Han, J. H.; Yoo, J. E.; Lee,
Y.-H. j.; Kim, J. K.; Nahm, S.; Ju, B.-K., J. Phys.
Chem. B 2006, 110 (11), 5310-5314.
220. Umeda, M.; Kokubo, M.; Mohamedi, M.; Uchida, I.,
Electrochim. Acta 2003, 48, 1367-1374.
221. Pollak, M., J. Phys. C: Solid State Phys 1981, 14,
2977-2993.
222. Anderson, M. L.; Morris, C. A.; Stroud, R. M.;
Merzbacher, C. I.; Rolison, D. R., Langmuir 1999, 15,
674–681.
223. Brinker, C. J.; Scherer, G. W., Sol-gel Science. Acad.
Press: San Diego, 1990.
224. Brinker, C. J., Structure of sol-gel-derived glasses.
In Glass Science and Technology. Academic Press, Inc.:
Boston, 1990; Vol. 4A.
225. Tanaka, K.; Kozuka, H., J.;, Sol-Gel Sci. Technol.
2004, 32 (1-3), 73-77.
226. Feng, J. Y.; Weng, L. T.; Chan, C. M.; Xhie, J.; Li,
L., Polymer 2001, 42 (5), 2259-2262.
227. Saegusa, T., Macromol. Symp. 1995, 98, 719-729.
228. Saegusa, T., Pure Appl. Chem. 1995, 67 (12), 1965-1970.
229. Gao, Y.; Jiang, P.; Liu, D. F.; Yuan, H. J.; Yan, X.
Q.; Zhou, Z. P.; Wang, J. X.; Song, L.; Liu, L. F.;
Zhou, W. Y.; Wang, G.; Wang, C. Y.; Xie, S. S., J.
Phys. Chem. B 2004, 108, 12877-12881.
230. Luo, J.; Wang, X. H.; Li, J.; Zhao, X. J.; Wang, F.
S., Polymer 2007, 48 (15), 4368-4374.
231. Luo, J.; Wang, X. H.; Li, J.; Zhao, X. J.; Wang, F.
S., Polymer 2007, 48 (15), 4368-4374.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *