帳號:guest(3.149.251.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):任慈浩
作者(外文):Jen, Tzu-Hao
論文名稱(中文):高分子發光二極體中激發態能量的探討:共軛高分子發光二極體中單重態激子對三重態激子比值的量測與抑制磷光發光二極體中磷光染料三重態激子的淬熄
論文名稱(外文):Investigation of Excitation Energy in Polymer Light-Emitting Diode: Measurement of Singlet to Triplet Ratio in Polymer Light-Emitting Diode and Effective Reduction of Quenching of Phosphor Triplet Exciton in Electrophosphorescent Polymer Light-Emitting Diode
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-An
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:913610
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:141
中文關鍵詞:單重態激子三重態激子光致吸收實驗單光子技術斯特恩-沃爾默分析遮蔽效應
外文關鍵詞:singlet excitontriplet excitonphotoinduced absorptiontime correlated single photon countingStern-Volmer analysisshielding effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:506
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
共軛高分子的電光與光電特性,目前廣受學術界與產業界的重視。其中又以高分子發光二極體 (PLED) 及其在顯示器的應用潛力最高。而PLED的效率受到多個因素的影響,如電子和電洞分別經由陰極與陽極注入發光層,在發光層再結合形成激子的分率γ、發光材料的螢光效率ΦF與電激發下單重態激子生成的分率χS等。在這些參數之中,χS之值在共軛高分子中仍有很大的爭議。因此本文的第一部分,乃是量測PLED中χS的大小。利用掺雜磷光小分子於共軛高分子中,並觀測其電激發下瞬態放光的行為 (transient electroluminescence),我們得到以PCBPF為主體的PLED中,χS大於量子力學所預估的結果 (χS > 25%)。另外,隨著電壓的增加,χS的值也隨之上升,而我們認為此現象可能是由於三重態激子彼此之間的凐滅(triplet-triplet annihilation) 產生單重態激子的結果所致。
磷光發光二極體是目前一個很熱門的領域,因其理論上可百分之
百的利用到電激發所產生的能量 (單重態與三重態能量),使得磷光
發光二極體的效率大幅的提升。但是其效率將會受到主體三重態能階
(ET) 的影響,若主體的ET 低於磷光小分子的ET,則磷光小分子上的
三重態激子將會回傳其能量至主體的三重態上,而非以發射磷光的方
式回到基態,進而造成磷光發光二極體效率的下降。而解決此問題最
直接的方式,乃是合成具有高ET的主體。但是本文的第二部分,利
用Stern-Volmer 分析,發現藉由引入多量側鏈於共軛高分子以提升其立體障礙性,將可避免高ET 磷光小分子接近低ET 高分子主鏈,抑制磷光小分子上三重態激子回傳其能量至主體三重態上的機會。而以此類型的共軛高分子作為磷光元件的主體,也可得到高效率的磷光元
件。以CzPPP 掺雜8 wt% Ir-G 的磷光元件為例,縱使CzPPP 的ET
低於Ir-G 的ET (ET (CzPPP) = 2.39 eV;ET (Ir-G) = 2.41 eV),但是其磷光元件效率 (30 cd/A),還優於以高ET 高分子 (PCBP, ET = 2.53 eV)為主體的磷光元件 (23 cd/A)。因此這也提供了一個新的分子設計概念:對於用於綠光與藍光磷光小分子的高分子主體而言,除了合成具有高ET的共軛高分子之外,藉由引入多量側鏈於共軛高分子以提升其立體障礙性,避免磷光小分子接近高分子的主鏈,也可大幅的抑制高ET磷光小分子上的三重態激子被低ET主體淬熄的機率,進而得到高效率的磷光發光元件
Electroluminescence (EL) from organic molecules and conjugated polymers has attracted wide interest because of the large potential for application in display fabrication. In organic light-emitting diode (OLED),holes and electrons injected from the anode and cathode can recombine to yield
singlet fraction (χS) of 25% according to quantum statistics and some experiments. However, for polymer light-emitting diodes (PLED), this fraction still remains under debate. Therefore, it is extremely important for us to clarify χS in the PLED and investigate its relation with molecular structure of conjugated polymer so that high χS conjugated polymers can be designed accordingly.
In the first part of this thesis, a method is proposed to measure χS based on the measurement of phosphorescence decay of phosphorescent dopant in the polymer under electrical field excitation in the working device. We find that the χS in the blue emitting PCBPF based PLED exceeds the quantum statistics limit (25%) and increases with electric field excitation. It is probably resulted from
triplet-triplet annihilation by a collision between two triplet excitons in the same chain to yield a singlet exciton.
For purely fluorescent device, only singlet exciton is emissive and most energy is wasted by non-emissive triplet exciton. By doping with phosphor as guests in small molecules or polymers as hosts, both singlet and triplet exciton formed under electric field excitation can be harvested by the phosphor and consequently the internal quantum efficiency is possible to be promoted toward 100%. However, in order to confine triplet exciton on phosphor guest, a host material with triplet energy level (ET) higher than the phosphor guest is intuitively required as a significant quenching of triplet exciton by a low ET host for a high ET guests can occur。
In the second part of thesis, we demonstrate that an effective reduction of quenching of triplet exciton for a high ET phosphor guest with a low ET polymer host is possible upon introducing dense side chains to the polymer to block a direct contact from the guest such that possibility of Dexter energy transfer between them is reduced to a minimum. The system investigated is
CzPPP (ET = 2.39 eV) as host and Ir-G (ET=2.41 eV) as guest, which gives high device efficiency (30 cd/A) and is more efficient than that (23 cd/A) in the system with high host triplet energy (PCBP, ET = 2.53 eV). This observation
suggests a new route for molecular design of electroluminescent polymers as host for phosphorescent dopant:The ET of polymer host is not necessary to be higher than that of phosphor guest for efficient electrophosphorescence. Such finding provides a more freedom for molecular design of low ET electroluminescent polymers as host for high ET phosphor dopant.
第一章 序論
1-1 前言 1
1-2 共軛導電高分子的電子狀態之理論 3
1-3 有機發光二極體 (Organic Light-Emitting Diode, OLED) 與
高分子發二極體 (Polymer Light-Emitting Diode, PLED) 之
沿革 8
1-4 高分子發光二極體之發光原理 10
1-5 基本光物理過程 12
1-5-1 基本光物理過程介紹 12
1-5-2 影響螢光的因素 15
1-6 能量轉移之理論 17
1-7 三重態激子-三重態激子湮滅 23
1-8 磷光發光二極體的放光機制 24
1-9 影響螢光發光二極體效率的因素 26
1-10 本文目的 28
參考文獻 30
第二章 實驗方法
(1) 紫外光-可見光光譜儀 32
(2) 螢光光譜儀 32
(3) 單重態激子與三重態激子生命期的量測-單光子技術 32
(4) 斯特恩-沃爾默分析 35
(5) 非發光三重態激子生命期的量測-光致吸收實驗 36
(6) 高分子發光二極體其瞬態發光行為的量測 40
(7) 量測元件之製作 41
參考文獻 43
第三章 共軛高分子發光二極體中單重態激子數目對三重態激子數目
比值的量測
3-1 前言 44
3-2 有機發光二極體 (OLED) 中單重態激子生成的分率 44
3-3 高分子發光二極體 (PLED) 中單重態激子生成的分率 48
3-4 單重態激子與三重態激子生成截面的量測 53
3-5 本研究提出之χS理論關係式 63
3-5-1 磷光元件中磷光小分子瞬態發光行為的探討 63
3-5-2 χS關係式之推導 68
3-6 主客體之間單重態與三重態的傳能效率 74
3-7 實驗所使用的材料 75
3-8 基本光物理特性量測 77
3-9 光致吸收譜圖 78
3-10 光譜重疊 81
3-11 磷光小分子瞬態放光行為的量測 84
3-12 主客體之間單重態的傳能效率:
主體單重態激子生命期的測量 89
3-13 主客體之間三重態的傳能效率:
主體三重態激子生命期的測量 90
3-14 以PCBPF為主體的發光二極體中單重態激子生成的分率 92
3-15 結論 94
參考文獻 96
第四章 抑制磷光發光二極體中磷光染料三重態激子的淬熄
4-1 簡介 100
4-2 實驗所使用的材料 109
4-3 斯特恩-沃爾默分析 111
4-4 螢光光譜量測 118
4-5 共軛高分子與磷光小分子之間化學相容性的探討 121
4-6 磷光發光元件效率的探討 125
4-7 結論 131
參考文獻 132
總結與未來展望 135
本研究原創性之工作 138
自傳 139
著作目錄 140
References for chapter 1:
[1] J. C. W. Chien, “Polyacetylene: Chemistry, Physics,
and Material Science”,Academic Press, Orlando (1984).
[2] A. S. Wood, “Tapping the power of intrinsic
conductivity”, Modern Plastics Int., Aug. (1991) 33.
[3] C. Kittel, “Introduction to Solid State Physics”. 6th
ed., John Wiley & Son,Singapore (1986).
[4] S. M. Sze, “Semiconductor Devices, Physics and
Technology”, John Wiley & Son, New York (1985).
[5] T. A. Skotheim, “Handbook of Conducting Polymers Vol.
1&2”, Marcel Dekker, New York (1986).
[6] M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys.
1963, 38, 2042.
[7] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 1987,
51, 914.
[8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N.
Marks, K Mackay,R. H. Friend, P. L. Burns, and A. B.
Holmes, Nature 1990, 347, 539.
[9] N. J. Turro, “Modern Molecular Photochemistry,”
University Science Books, California (1991).
[10]http://microscopy.fsu.edu/primer/java/jablonski/jabintro
[11] D. A. Skoog, D. M. West, and F. J. Holler,
“Fundamentals of Analytical Chemistry”, 5th edition,
Saunders College Publishing (1988).
[12] http://turroserver.chem.columbia.edu/courses/
MMPposting.html
[13] http://www.olympusmicro.com/primer/techniques/
fluorescence/fret/fretintro.html.
[14] D. Wasserberg, S. C. J. Meskers, and R. A. J. Janssen,
J. Phys. Chem. A 2007, 111, 1381-1388.
[15] http://turroserver.chem.columbia.edu/courses/
MMP_Chapter_Updates/Chapter%207%20April04.pdf
[16] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S.
Sibley, M. E. Thompson, and S. R. Forrest, Nature
1998, 395, 151.
[17] K. C. Tang, K. L. Liu, and I. C. Chen, Chemical
Physics Letters 2004, 386, 437-441.
[18] P. A. Lane, L. C. Palilis, D. F. O’Brien, C.Giebeler,
A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau,
and D. D. C. Bradley, Phys. Rev. B 2001, 63, 235206.
[19] Tsutsui and S. Saito, “Intrinsically Conducting
Polymers: An Emerging Technology”, edited by M.
Aldissi, Kluwer Academic, Dordrecht, 1993, 246, 123.
[20] http://www.cdtltd.co.uk
[21] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R.
Forrest, Phys. Rev. B 1999, 60, 14422-14428.
[22] Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J.
Heeger, Nature 1999, 397, 414.
[23] A. S. Dhoot, D. S. Ginger, D. Beljonne, Z. Shuai, and
N. C. Greenham, Chem. Phys. Lett. 2002, 360, 195.
[24] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest,
and Z. G. Soos, Phys. Rev. B 2003, 68, 075211.
[25] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and M.
E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796-7797.

References for chapter 2:
[1] J. R. Lakowicz, Principles of Fluorescence
Spectroscopy, 2nd ed. Kluwer Academic/Plenum, New York
(1999).
[2] http://www.becker-hickl.de
[3] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and M.
E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796-7797.
[4] D. S. Ginger and N. C. Greenham, Phys. Rev. B 1999, 59,
10622-10629.
[5] Anna Hayer, Amena L. T. Khan, Richard H. Friend, and
Anna Köhler, Phys. Rev. B 2005, 71, 241302.
[6] C. Hosokawa, H. Tokailin, H. Higashi, and Tadashi
Kusumoto, Appl. Phys. Lett. 1992, 60, 1220-1222.

References for chapter 3:
[1] Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J.
Heeger, Nature 1999, 397, 414.
[2] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R.
Forrest, Phys. Rev. B 1999, 60, 14422.
[3] B. W. D’Andrade, M. A. Baldo, C. Adachi, J. Brooks, M.
E. Thompson,and S. R. Forrest, Appl. Phys. Lett. 2001,
79, 1045.
[4] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature
2000, 403, 750.
[5] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S.
Khan, A. KoÈhler, and R. H. Friend, Nature 2001, 413,
828.
[6] A. S. Dhoot, D. S. Ginger, D. Beljonne, Z. Shuai, and
N. C. Greenham,Chem. Phys. Lett. 2002, 306, 195.
[7] L. C. Lin, H. F. Meng, J. T. Shy, S. F. Horng, L. S.
Yu, C. H. Chen, H. H. Liao, C. C. Huang, K. Y. Peng,
and S. A. Chen, Phys. Rev. Lett. 2003, 90, 036601.
[8] A. S. Dhoot and N. C. Greenham, Phys. Rev. Lett. 2003,
91, 219702.
[9] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and
Z. G. Soos, Phys. Rev. B 2003, 68, 075211.
[10] E. J. W. List, C. H. Kim, A. K. Naik, G. Leising, W.
Graupner, and J. Shinar, Proc. SPIE 2001, 4105,
450- 463.
[11] Yohei Iwasaki, Takahiro Osasa, Miho Asahi, and Michio
Matsumura,Yoshio Sakaguchi, and Tomoyuki Suzuki, Phys.
Rev. B 2006, 74, 195209.
[12] C. Rothe, S. M. King, and A. P. Monkman, Phys. Rev.
Lett. 2006, 97, 076602.
[13] Z. Shuai, D. Beljonne, R. J. Silbey, and J. L. Bredas,
Phys. Rev. Lett. 2000, 84, 131.
[14] A. Ye, Z. Shuai, and J. L. Brédas, Phys. Rev. B 2002,
65, 045208.
[15] K. Tandon, S. Ramasesha, and S. Mazumdar, Phys. Rev. B
2003, 67, 045109.
[16] M. N. Kobrak and E. R. Bittner, Phys. Rev. B 2000, 62,
11473.
[17] S. Karabunarliev and E. R. Bittner, Phys. Rev. Lett.
2003, 90, 079901.
[18] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha,
and Z. V. Vardeny, Nature 2001, 409, 494-497.
[19] M. Wohlgenannt, phys. stat. sol. (a) 2004, 201, 1188–
1204.
[20] M. Wohlgenannt and Z. V. Vardeny, J. Phys.: Condens.
Matter. 2003, 15, R83-R107.
[21] M. Wohlgenannt, X. M. Jiang, Z.V. Vardeny, and R. A.
J. Janssen, Phys. Rev. Lett. 2002, 88, 197401.
[22] M. K. Lee, M. Segal, Z. G. Soos, J. Shinar, and M. A.
Baldo, Phys. Rev. Lett. 2005, 94, 137403.
[23] M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B.
Hummel, J. S. Kolb, H. G. Roskos, U. Scherf, and J. M.
Lupton, Nature Materials 2005, 4, 340-346.
[24] J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H.
Friend, J. App. Phys. 2000, 88, 1073.
[25] A.S. Dhoot and N.C. Greenham, Adv. Mater. 2002, 14,
1834.
[26] H. Liao, H. F. Meng, S. F. Horng, J. T. Shy, K. Chen,
and C. S. Hsu, Phys. Rev. B 2005, 72, 113203.
[27] T. Virgili, G. Cerullo, L. Luer, G. Lanzani, C.
Gadermaier, and D. D. C. Bradley, Phys. Rev. Lett.
2003, 90, 247402.
[28] V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, and
N. Tessler, Adv. Mater. 1999, 11, 285-288.
[29] M. A. Baldo and S. R. Forrest, Phys. Rev. B 2000, 62,
10958-10966.
[30] G. Cerullo, S. Stagira, M. Zavelani-Rossi, S. De
Silvestri, T. Virgili, D. G. Lidzey, and D. D. C.
Bradley, Chem. Phys. Lett. 2001, 335, 27-33.
[31] J. L. Sessler, B. Wang, and A. Harriman, J. Am. Chem.
Soc. 1995, 117, 704.
[32] A. M. Brun and A. Harriman, J. Am. Chem. Soc. 1994,
116, 10383.
[33] P. J. Brewer, P. A. Lane, A. J. deMello, D. D. C.
Bradley, and J. C. deMello, Adv. Funct. Mater. 2004,
14, 562-570.
[34] A. J. Heeger, Nature of the primary photo-excitations
in poly-(arylene-vynylenes): bound neutral excitons or
charged polaron pairs. In Primary photoexcitations in
conjugated polymers: molecular exciton versus
semiconductor band model, 1st ed.; N.S Sariciftci,
World Scientific Pub Co: Singapore, 1997.
[35] D. Y. Kondakova, J. App. Phys. 2007, 102, 114504.
[36] V. Cleave, G. Yahioglu, P. L. Barny, D. H. Hwang, A.
B. Holmes, R. H. Friend, and N. Tessler, Adv. Mater.
2001, 13, 44-47.
[37] D. Kolosov, V. Adamovich, P. Djurovich, M. E.
Thompson, and C. Adachi, J. Am. Chem. Soc. 2002, 124,
9945-9954.
[38] H. D. Burrows, J. Seixas de Melo, C. Serpa, L. G.
Arnaut, A. P. Monkman, I. Hamblett, and S. Navaratnam,
J. Chem. Phys. 2001, 115, 9601-9606.
[39] C. Rothe, S. King, and A. P. Monkman, Nat. Mater.
2006, 5, 463.
[40] J. B. Birks, “Photophysics of aromatic molecule,”
Wiley-Interscience,(1969)
[41] K. C. Tang, K. L. Liu, and I. C. Chen, Chemical
Physics Letters 2004, 386, 437-441.
[42] B. Valeur, “Molecular Fluorescence: Principles and
Applications,”Wiley-VCH Verlag GmbH, (2001).
[43] 陳彥均,“高三重態能量之聚咔唑衍生物的光物理及電致發光
特性之研究”,國立清華大學化工所博士論文,民國九十六
年。
[44] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E.
Horsburgh, I. Hamblett, and S. Navaratnam, Phys. Rev.
Lett. 2001, 86, 1358.
[45] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and M.
E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796-7797.
[46] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler,
M. Inbasekaran, and Woo, E. P., Appl. Phys. Lett.
1998, 73, 2453.
[47] F. C. Chen, S. C. Chang, G. He, S. Pyo, Y. Yang, M.
Kurotaki, and J. Kido, J. Polym. Sci. Part B: Polym.
Phys. 2003, 41, 2681.
[48] D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K.
Müllen, and H. Bassler, Adv. Mater. 2001, 13, 65-70.
[49] T. G. Pavlopoulos and P. R. Hammond, J. Am. Chem. Soc.
1974, 96, 6568-6579.
[50] Walter J. Finkenzeller, Thomas Hofbeck, Mark E.
Thompson, and Hartmut Yersin, Inorg. Chem. 2007, 46,
5076-5083.
[51] 廖金龍,“電荷傳輸基團改質之聚芴系高分子結構與物性及其.
在發光二極體上的應用”,國立清華大學化工所博士論文,民
國九十五年.
[52] Anna Hayer, Amena L. T. Khan, Richard H. Friend, and
Anna Köhler, Phys. Rev. B 2005, 71, 241302.
[53] J. Partee, E. L. Frankevich, B. Uhlhorn, J. Shinar, Y.
Ding, and T. J. Barton, Phys. Rev. Lett. 1999, 82,
3673-3676.
[54] D. Y. Kondakova, J. App. Phys. 2007, 102, 114504.
[55] N. J. Turro, “Modern Molecular Photochemistry,”
University Science Books, California (1991).
[56] W. Klöpffer, D. Fischer, and G. Naundorf,
Macromolecule 1977, 10, 450-452.
[57] N. F. Pasch and S. E. Webber, Macromolecule 1978, 11,
727-732.

References for chapter 4:
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S.
Sibley, M. E. Thompson, and S. R. Forrest, Nature 1998,
395, 151.
[2] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E.
Thompson, and S. R. Forrest, Appl. Phys. Lett. 1999,
75, 4.
[3] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
R. C. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, and M.
E. Thompson, Inorg. Chem. 2001, 40, 1704.
[4] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
H-E Lee, P. E. Burrows, S. R. Forrest, and M. E.
Thompson, J. Am. Chem. Soc. 2001, 123, 4304.
[5] S. C. Lo, N. A. H. Male, J. P. J. markham, S. W.
Magennis, P. L. Burn, O. V. slata, and I. D. W. Samuel,
Adv. Mater. 2002, 14, 975.
[6] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G.
C. Bazan, and A. J. Heeger, Adv. Mater. 2002, 14, 581.
[7] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren,
J. Li, and M. E. Thompson, Appl. Phys. Lett. 2003, 82,
3818.
[8] X. Gong, S-H Lim, J. C. Ostrowski, D. Moses, C. J.
Bardeen, and G. C. Bazan, J. Appl. Phys. 2004, 95, 948.
[9] I. H. Campbell, D. L. Smith, S. Tretiak, R. L. Martin,
C. J. Neef, and J. P. Ferraris, Phys. Rev. B 2002, 65,
85210.
[10] B. D. Chin, M. C. Suh, M-H Kim, S. T. Lee, H. D. Kim,
and H. K. N. Chung, Appl. Phys. Lett. 2005, 86, 133505.
[11] X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan, and
A. J. Heeger, Adv. Funct. Mater. 2003, 13, 439.
[12] 廖金龍,“電荷傳輸基團改質之聚芴系高分子結構與物性及其
在發光二極體上的應用”,國立清華大學化工所博士論文,民
國九十五年.
[13] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, and M.
E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796-7797.
[14] D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K.
Müllen, and H. Bassler, Adv. Mater. 2001, 13, 65-70.
[15] W. Zhu, Y. Mo, M. Yuan, W. Yang, and Y. Cao, Appl.
Phys. Lett. 2002, 80, 2045.
[16] X. Chen, J. L. Liao, Y. Liang, M. O. Ahmed, H. E.
Tseng and S. A. Chen, J. Am. Chem. Soc. 2003, 125, 636.
[17] J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, and Y.
Cao,Macromolecules 2005, 38, 4072.
[18] J. Pina, J. Seixas de Melo, H. D. Burrows, A. P.
Monkman, and S. Navaratnam, Chemical Physics Letters
2004, 400, 441-445.
[19] X. Yang, D. Neher, D. Hertel, and T. K. Däubler, Adv.
Mater. 2004, 16, 161.
[20] A. V. Dijken, J. J. A. M. Bastiaansen, N. M. M.
Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I.
Bach, P. Stossel, and K. Brunner, J. Am. Chem. Soc.
2004, 126, 7718-7727.
[21] Y. C. Chen, G. S. Huang, C. C. Hsiao, and S. A. Chen,
J. Am. Chem. Soc. 2006, 128, 8549-8558.
[22] N. R. Evans, L. S. Devi, C. S. K. Mak, S. E. Watkins,
S. I. Pascu, A. Kohler, R. H. Friend, C. K. Williams,
and A. B. Holmes, J. Am. Chem. Soc. 2006, 128, 6647-
6656.
[23] S. M. King, H. A. Al-Attar, R. J. Evans, A. Congreve,
A. Beeby, and A. P. Monkman, Adv. Funct. Mater. 2006,
16, 1043-1050.
[24] 黃思博,“電荷傳輸基團改質共軛高分子之結構物性及其在發
光二極體與光電池元件之應用”,國立清華大學化工所博士論
文,民國九十五年。
[25] 蕭安恩,“對位苯系高分子之結構與光電行為的關係以及單一
共軛高分子鏈的構形之研究”,國立清華大學化工所碩士論
文,民國九十六年。
[26] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M.
A. Baldo, M. E. Thompson, and S. R. Forrest, Appl.
Phys. Lett. 2001, 79, 2082-2084.
[27] R. J. Holmes, B. W. D'Andrade, S. R. Forrest, X. Ren,
J. Li, and M. E. Thompson, Appl. Phys. Lett. 2003, 83,
3818-3820.
[28] 陳彥均,“高三重態能量之聚咔唑衍生物的光物理及電致發光
特性之研究”,國立清華大學化工所博士論文,民國九十六
年。
[29] B. D. Allen, A. C. Benniston, A. Harriman, I. Llarena,
and C. A. Sams, J. Phys. Chem. A 2007, 111, 2641-2649.
[30] F. Lafolet, S. Welter, Z. Popovic, and L. D. Cola, J.
Mater. Chem. 2005, 15, 2820-2828.
[31] N. J. Turro, Modern Molecular Photochemistry;
University Science Books: Sausalito, CA, 1991, pp 311-
316.
[32] Y. Y. Noh, C. L. Lee, J. J. Kim, and K. Yase, J. Chem.
Phys. 2003, 118, 2853.
[33] F. C. Chen, S. C. Chang, G. He, S. Pyo, Y. Yang, M.
Kurotaki, and J. kido, J. Polymer Sci. B 2003, 41,
2681.
[34] T. H. Kim, D. H. Yoo, J. H. Park, O. O. Park, J. W.
Yu, and J. K. Kim, Appl. Phys. Lett. 2005, 86, 171108.
[35] M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev.
B 2000, 62, 10967-10977.
[36] P. M. Borsenberger and M. B. Oregan, Chem. Phys. 1995,
200, 257-263.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *