帳號:guest(18.117.171.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐語晨
作者(外文):Hsu, Yu-Chen
論文名稱(中文):以分子動力學及奈米壓痕分析一維奈米結構材料機械性質
論文名稱(外文):On the Mechanical Properties of 1-D Nanostructured Materials Using Molecular Dynamics Simulation and Nanoindentation Testing
指導教授(中文):陳文華
鄭仙志
指導教授(外文):Chen, Wen-Hwa
Cheng, Hsien-Chie
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:913768
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:189
中文關鍵詞:奈米碳管金屬奈米線機械性質破壞行為介面接著分子動力學分析
外文關鍵詞:Carbon NanotubsMetal NanowiresMechanical PropertiesFracture BehaviorsInterfacial AdhesionMolecular Dynamics Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:404
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
自奈米碳管發現以來,由於其優異材料性質,引起對於各式奈米結構材料廣泛的研究。近年來,隨著電子元件尺寸的微小化,一維奈米結構如奈米碳管、奈米線及奈米桿等,皆被認為可作為電子元件或互連結構應用於微奈米電子及機電之裝置。然而,奈米結構材料雖具相當潛力於各種工程應用上,但相關機械與熱性質仍未被完整且確實地瞭解。特別對於其相關影響因子,如尺寸、晶格結構,乃至缺陷等,對於材料性質之影響,均須予以深入探討。
近來,由於數值計算方法的發展,分子動力學已被廣泛應用於奈米材料機械性質之探討。本論文旨在建立一精確、有效的分子動力學分析模型以探討奈米結構材料之機械性質。首先將針對不同結構之單/多層奈米碳管,包括鋸齒型、扶手椅型及混合型,對於其基本機械性質進行估算。其中層間凡得瓦力對於奈米碳管機械性質之影響為本研究主要重點項目之一。接下來更將研究延伸至多層奈米碳管層間凡得瓦力之效應,並對於其層間剪切作用力及強度進行討論。此外,由於製造技術之限制,奈米碳管常被發現於製程中有缺陷產生。因此,本論文希望藉由分子動力學模擬,有系統地探討缺陷效應對於奈米碳管機械性質及破壞行為之影響。主要討論之影響因子包括缺陷數量、型式、位置及分布。本研究中更針對局部應力分布及裂縫成長路徑之關聯性進行探究。
除了奈米碳管,金屬奈米線也是另一種被廣泛應用之奈米結構材料。因此,本論文藉由分子動力學模擬及奈米壓印試驗,估算三種不同金屬奈米線(金、銀及鈷)機械性質。在此同時對於長度與截面積、晶格結構、缺陷及晶界改變等效應進行分析。進一步經由拉伸試驗模擬,更可得到金、銀奈米線之極限強度及頸縮結構。此外,根據奈米壓印試驗所求得之鈷奈米線彈性模數,更可與分子動力學所估算之數值相互比對並驗證模型之正確性。
最後,本論文將建立一多材料之分子動力學分析模型,以深入瞭解自行組裝層(self-assembly monolayer, SAM)之塗覆對於金基板與樹酯材料間介面接著及金接點之熱壓合接合之影響。本論文中,將針對三種具有不同官能基之烷基硫醇(SH(CH2)nX, X=CH3, OH, NH2)進行討論。首先經由軸向拉伸模擬,探討各式自行組裝層之彈性性質。接下來,在自行組裝層對於介面接著影響的討論中,除了烷基硫醇鏈長及官能基之影響,亦對於其於相異晶格結構之金基板表面上之接著行為進行比較。本論文之研究結果與文獻中部份計算數值及實驗數據相互比較,結果均相當脗合。
本論文之成果,不僅對於奈米結構材料基本物性及相關機械行為,可有較全面的瞭解,對於異質材料間之黏著力亦可準確評估,並為未來進行奈米力學行為研究及奈米結構材料之工業應用,建立堅實基礎。
Ever since the exciting discovery of carbon nanotubes (CNTs), there has been a huge growth in research in material science on finding novel nanostructured materials with advanced material properties. Recently, due to the shrink of feature size in IC technology, nanostructured materials, especially one-dimensional (1-D) nanostructures such as CNTs, nanowires and nanorods, have been considered for use in nanoscale electronic or electromechanical devices as active electronic components or interconnects. Despite of their potential, as claimed, for various engineering applications, the thermal-mechanical properties of nanostructured materials remain not fully determined or clear, not mentioning the effects of the relevant influence factors, such as size, crystal structure and defect.
Recent progress in computational methods based on molecular dynamics (MD) methods has allowed the characterizations of the mechanical properties of nanomaterials. The study aims at developing an accurate and effective MD simulation model to explore the thermal-mechanical characteristics of nanostructured materials. The study starts from the evaluation of the fundamental mechanical properties of various single/multi-walled carbon nanotubes (S/MWCNTs), including zig-zag, armchair and hybrid types. The study first focuses on the exploration of the effect of the weak inlayer van der Waals (vdW) atomistic interactions on the mechanical properties of S/MWCNTs. The influence of the axial orientation mismatch between the inner and outer layers of MWCNTs on the associated mechanical properties are also addressed, followed by the investigation of the behaviors of the interlayer shear force/strength of MWCNTs. The effectiveness of the MD simulation is demonstrated through the comparison with the theoretical/experimental data available in literature. Besides, due to the limitation of fabrication technologies nowadays, atomistic defects are often perceived in carbon nanotubes (CNTs) during the manufacturing process. Thus, the second goal of the study is to perform a systematic investigation of the effects of atomistic defects on the nanomechanical properties and fracture behaviors of single-walled CNTs (SWCNTs) using MD simulation. Key parameters and factors under investigation include the number, type (namely the vacancy and Stone-Wales defects), location and distribution of defects. The correlation between local stress distribution and fracture evolution is also discussed. To demonstrate the feasibility of the proposed MD model, the present results are compared with the theoretical/experimental data available in literature.
The third goal of the study aims to estimate the elastic properties of three different metal nanowires, namely made of gold (Au), silver (Ag) and cobalt (Co), through MD simulations and nanoindentation testing. The investigation also addresses the effects of the length and cross-sectional area of the nanowires, crystal structure, presumed defect and the variation of grain boundary of the metal crystal on the mechanical properties. Furthermore, tensile test simulation for both the Au (gold) and Ag nanowires is carried out, where the ultimate strength and the necking structure are also evaluated. Verification of the MD simulation model in terms of elastic modulus is made using nanoindentation experiment, and the literature theoretical and experimental data.
Finally, the last goal of the study is to establish a multi-material MD simulation model to look into the insight of the effects of self-assembly monolayer (SAM) coating on the interfacial adhesion of an Au-epoxy system and on the bondability of the thermocompression-bonded Au-Au joints. Three different types of functionalized alkanethiol SAMs (SH(CH2)nX, X=CH3, OH, NH2) chemisorbed onto Au substrates, are considered in the investigation. The investigation first explores the elastic properties of these SAMs through uniaxial tensile simulation, followed by exploring the effects of the SAMs on the adhesion behaviors of the Au-epoxy system and the Au-Au system, and those of chain lengths and tail groups of the n-alkanethiolates on the adhesion strength. The study also reports a comparative analysis of the effects of the crystal orientation of Au on the associated interfacial behaviors. The calculated results are partly compared with the published experimental data, and also with each other to identify the optimal SAM candidate in terms of adhesion strength for the Au-epoxy system.
The achievements made in this study can not only provide a more thorough and clear understanding of the basic mechanical properties and behaviors of the nanostructured materials and the adhesion behaviors at the Au-Au and Au-epoxy bi-material interfaces, but also give a solid foundation for future research on the nanomechanics and industrial application of the nanostructured materials.
摘要 i
Abstract iv
Nomenclature vii
Table List xiv
Figure List xv
1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 4
1.2.1 Mechanical Properties of Carbon Nanotube 4
1.2.2 Fracture Behavior and Structural Defect Effects on Mechanical Properties of Carbon Nanotubes 8
1.2.3 Mechanics Characteristics of Metal Nanowire 10
1.2.4 Interfacial adhesion for bi-material interfaces 14
1.3 Scopes and Objectives 19
2 Classical Molecular Dynamics 23
2.1 Hamiltonian Dynamics 23
2.2 Potential Function 26
2.2.1 Potential Function of Carbon Nanotubes 26
2.2.2 Potential Function of Metal Nanowires 30
2.2.3 Potential Function for Interfacial Adhesion of Bi-material Interfaces 32
2.3 Gear’s Predictor-Corrector Algorithms 34
2.4 Atomistic Stress 36
3 Molecular Structures and Modeling of Nanomaterials 48
3.1 Atomic Structures of CNTs 48
3.2 Defects in CNTs 49
3.3 Atomic Structure of Metal Nanowires 50
3.4 Simulation Model and Bonding Mechanism for Interfacial Adhesion 52
3.5 The Adsorption Structures of SAMs on Au(100) and Au(111) 54
4 Mechanical Properties of Carbon Nanotubes with the Inlayer vdW Interactions 67
4.1 The Elastic Moduli of S/MWCNTs 69
4.2 The Poisson’s Ratios of S/MWCNTs 73
4.3 The Shear Moduli of SWCNTs 75
4.4 The Interlayer Shear Force/Strength of MWCNTs 75
5 The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes 101
5.1 Effect of Defect Rate of Atomistic Vacancy 101
5.2 The Stone-Wales Defect 104
5.3 Effect of the Size of Defective SWCNTs 104
5.4 Evolution of Fracture 105
6 Mechanical Properties of Metal Nanowires 120
6.1 The Mechanical Properties of Au and Ag Nanowires 120
6.2 The Effects of Crystal Structure, Defect, and Grain Boundary 123
6.3 Mechanical Properties of Co Nanowires 124
6.4 Nanoindentation Testing on the Elastic Properties of Co Nanowires 126
7 Interfacial Adhesion Evaluation of Self-Assembled Monolayer Coated Au-Epoxy System by Molecular Dynamics Simulation 147
7.1 The Mechanical Properties of SAM Chain 147
7.2 The interfacial adhesion of Au-SAM and SAM-epoxy interfaces 148
7.3 The Interfacial Adhesion at Au-Au Joint 151
8 Concluding Remarks and Recommendations 164
Reference 170
1. Abell, G. C. (1985): Empirical chemical pseudopotential theory of molecular and metallic bonding. Physical Review B, 31: 6184-6196.
2. Andrews, R.; Jacques, D.; Qian, D.; Dickey, E. C. (2001): Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39: 1681-1687.
3. Ang, X. F.; Li, F. Y.; Tan, W. L.; Chen, Z.; Wong, C. C.; Wei, J. (2007): Self-assembled monolayers for reduced temperature direct metal thermocompression bonding. Applied Physics Letters 91: 061913.
4. Ang, X. F.; Chen, Z.; Wong, C. C.; Wei, J. (2008): Effect of chain length on low temperature gold-gold bonding by self-assembled monolayers. Applied Physics Letters 92: 131913.
5. Bain, C. D.; Biebuyck, H. A.; Whitesides, G. M. (1989a): Comparison of self-assembled monolayers on gold: Coadsorption of thiols and disulfides. Langmuir 5: 723-727.
6. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. (1989b): Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society 111: 321-335.
7. Basinski, Z. S.; Duesbery, M. S.; Taylor, R. (1971): Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice. Canadian Journal of Physics 49: 2160-2180.
8. Battezzatti, L.; Pisani, C.; Ricca, F. (1975): Equilibrium conformation and surface motion of hydrocarbon molecules physisorbed on graphite. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 71: 1629-1639.
9. Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S. (2002): Atomistic simulations of nanotube fracture. Physical Review B, vol. 65, pp. 235430.
10. Bhatia R.; Garrison, B. J. (1997): Structure of c(4×2) superlattice in alkanethiolate self-assembled monolayers. Langmuir 13: 4038-4043.
11. Bonner, T.; Baratoff, A. (1997): Molecular dynamics study of scanning force microscope on self-assembled monolayers. Surface Science 377-379: 1082-1086.
12. Branicio, P. S.; Rino, J. P. (2000): Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Physics Review B 62: 16950-16955.
13. Brenner, D. W. (1990): Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42: 9458-9471.
14. Brown, T. M.; Adams, J. B. (1995): EAM calculations of the thermodynamics of amorphous copper. Journal of Non-Crystalline Solids 180: 275-284.
15. Burkert, U.; Allinger, N. L. (1982): Molecular mechanics. American Chemical Society. (Washington, D.C.)
16. Chakrabarty, A.; Cagin, T. (2008): Computational studies on mechanical and thermal properties of carbon nanotube based nanostructures. Computers, Materials & Continua 7: 167-190.
17. Chandra, N.; Namilae, S.; Shet, C. (2004): Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B 69: 094101.
18. Chang, I. L.; Yeh, M. S. (2008): An atomistic study of nanosprings. Journal of Applied Physics 104: 024305.
19. Chang, I. L.; Yeh, M. S. (2009): An atomistic study of elliptic cross-sectional nanosprings. Computer Modeling in Engineering and Science 41: 95-106.
20. Chelikowsky, J. R. (1992): Formation of C60 clusters via Langevin molecular dynamics. Physical Review B, 45: 12062-12070.
21. Chen, W.; Ahmed, H. (1993): Fabrication of 5-7 nm wide eyched lines in silicon using 100keV electron-beam lithography and polymethylmethacrylate resist. Applied Physics Letters 62: 1499-1501.
22. Chen, Y.; Dorgan, Jr. B. L. (2006): On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Applied Physics Letters 100: 104301.
23. Chen, Y; Dorgan Jr., B. L.; Mcllroy, D. N.; Aston, D. E. (2006): On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Journal of Applied Physics 100: 104301.
24. Chen, W. H.; Cheng, H. C.; Hsu, Y. C.; Uang, R. H.; Hsu, J. S. (2008): Mechanical material characterization of Co nanowires and their nanocomposite. Composites Science and Technology 68: 3388-3395.
25. Chen, W. H.; Cheng, H. C.; Liu, Y. L. (2010): Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Computational Materials Sciences 47: 985-993.
26. Cheng, H. C.; Liu, Y. L.; Hsu, Y. C.; Chen, W. H. (2009a): Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. International Journal of Solids and Structures 46: 1695-1704.
27. Cheng, H. C.; Wu, C. H.; Liu, Y. L.; Chen, W. H. (2009b): Thermal effect on the vibrational behaviors of single-wall carbon nanotubes using molecular dynamics and modified molecular structural mechanics. The 2009 International Conference on Computational & Experimental Engineering and Sciences, Phuket, Thailand, April 8-13.
28. Chiang, K. N.; Chou, C. Y.; Wu, C. J.; Yuan, C. A. (2006): Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method. Applied physics letters 88: 171904.
29. Chiang, K. N.; Chou, C. Y.; Wu, C. J.; Huang, C. J.; Yew, M. C. (2008): Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential. Computer Modeling in Engineering and Science 37: 85-96.
30. Chiu, C. C.; Huang, C. J.; Yang, S. Y.; Lee, C. C.; Chiang, K. N. (2010): Investigation of the delamination mechanism of the thin film dielectric structure in flip chip packages. Microelectronic Engineering 87: 496-500.
31. Clausius, R. (1870): On a mechanical theory applicable to heat. Philosophical Magazine 40: 122-127.
32. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr. K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. (1995): A second generation force field for the simulation of proteins, nucleic, acids, and organic molecules. Journal of American Chemical Society 117: 5179-5197.
33. Courtney T. H. (1990): Mechanical Behavior of Materials. McGraw-Hill. (New York).
34. Cuenot, S.; Fretigny, C.; Demoustier-Champagne, S.; Nysten, B. (2004): Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B 69: 165410.
35. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. (2001): Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293: 1289-1292.
36. Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. (2002): Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A 334: 173–178.
37. Diao, J.; Gall, K.; Dunn, M. L. (2004): Atomistic simulation of the structure and elastic properties of gold nanowires. Journal of the Mechanics and Physics of Solids 52: 1935-1962.
38. Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. (1993): Molecular ordering of organosulfur compounds on Au(111) and Au(100): Adsorption from solution and in ultrahigh vacuum. The Journal of Chemical Physics 98: 678-688.
39. Ebbesen, T. W.; Takada, T. (1995): Topological and sp3 defect structures in nanotubes. Carbon 33: 937-978.
40. Espinosa, H. D.; Prorok, B. C.; Fischer, M. (2003): A methodology for determining mechanical properties of freestanding thin films and MEMS. Journal of the Mechanics and Physics of Solids 51: 47-67.
41. Falvo, M. R.; Clary, G. J.; Taylor II, R. M.; Vhi, V.; Brooks Jr., F. P.; Washburn, S.; Suerfine, R. (1997): Bending and buckling of carbon nanotubes under large strain. Nature 389: 582-584.
42. Fan. H. B.; Chan, E.; Wong, C.; Yuen, M. (2007): Molecular dynamics simulation of thermal cycling test in electronic packaging. ASME Journal of Electronic Packaging 129: 35-40.
43. Fang. T. H.; Chang, W. J.; Wu, C. D. (2008): Effects of temperature and size on contact behavior of self-assembled alkanethiol cluster for dip-pen nanolithography. Microelectronic Engineering 85: 223-226.
44. Fenter, P.; Eberhardt, A.; Eisenberger P. (1994): Self-assembly of n-alkyl thiols as disulfides on Au(111). Science 266: 1216-1218.
45. Fowkes, F. M. (1983): Physicochemical aspects of polymer surfaces. Plenum. (New York)
46. Furusawa, T.; Sakuma, N.; Ryuzaki, D.; Kondo, S.; Takeda, K. I.; Machida, S. T.; Hinode, K. (2000): Simple, reliable Cu/low-k interconnect integration using mechanically strong low-k dielectric material: silicon-oxycarbide. Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International: 222-224.
47. Gao, G. H.; Cagin, T.; Goddard III, W. A. (1998): Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9: 184-191.
48. Gear, C. W. (1971): Numerical Initial Value Problems in Ordinary Differential Equations: Chapter 9. Prentice-Hall. (Englewood Cliffs, New Jersey)
49. Gerdy, J. J.; Goddard, W. A. III (1996): Atomistic structure for self-assembled monolayers of alkanethiols on Au(111) surfaces. Journal of the American Chemical Society 118: 3233-3236.
50. Ghanbari, J.; Naghdabadi, R. (2009): Multiscale Nonlinear Constitutive Modeling of Carbon Nanostructures Based on Interatomic Potentials. Computers, Materials & Continua 10: 41-64.
51. Girifalco, L. A.; Weizer, V. G. (1959): Application of the Morse potential function to cubic metals. Physical Review 114: 687-690.
52. Guo, W.; Gao, H. (2005): Optimized bearing and interlayer friction in multiwalled carbon nanotubes. Computer Modeling in Engineering and Sciences 7: 19-34.
53. Hahn, J. R.; Kang, H.; Song, S.; Jeon, I. C. (1996): Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study. Physical Review B 53: R1725-R1728.
54. Han, X. J.; Wang, J. Z.; Chen, M.; Guo, Z. Y. (2004): Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt. Journal of Physics: Condensed Matter 16: 2565-2574.
55. Hashimoto, A.; Suennaga, K.; Gloter, A; Urita, K.; Iijima, S. (2004): Direct evidence for atomic defects in graphene layers. Nature 430: 870-873.
56. Hautman, J.; Klein, M. L. (1989): Simulation of a monolayer of alkyl thiol chains. Journal of Chemical Physics 91: 4994-5001.
57. Heggie, M. I. (1991): Semiclassical interatomic potential for carbon and its application to the self-interstitial in graphite. Journal of Physics: Condensed Matter 3: 3065-3079.
58. Henda, R.; Grunze, M.; Pertsin, A. J. (1998): Static energy calculations of stress-strain behavior of srlf-assembled monolayers. Tribology Letter 5: 191-195.
59. Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A. (1998): Elastic properties of C and B¬xCyNz¬ composite nanotubes. Physical Review Letters 80: 4502-4505.
60. Hirai, Y.; Nishimaki, S.; Mori, H.; Kimoto, Y.; Akita, S.; Nakayama, Y.; Tanaka, Y. (2003): Molecular dynamics studies on mechanical properties of carbon nanotubes with pinhole defects. Japanese Journal of Applied Physics 42: 4120-4123.
61. Hu, S. Y.; Ludwig, M.; Kizler, P.; Schmauder, S. (1998): Atomistic simulations of deformation and fracture of α-Fe. Modelling and Simulation in Materials Sciences and Engineering 6: 567-586.
62. Huntington, H. B. (1958): The elastic constants of crystals. Academic Press. (New York)
63. Iijima, S. (1991): Helical microtubules of graphitic carbon. Nature 354: 56-58.
64. Ilic, B.; Czaplewski, D.; Craighead, H. G.; Neuzil, P.; Campagnolo, C.; Batt, C. (2000): Mechanical resonant immunospecific biological detector. Applied Physics Letters 77: 450-452.
65. Jia, J.; Huang, Y. D.; Long, J. He, J. M.; Zhang, H. X. (2009): Molecular dynamics simulation of the interface between self-assembled monolayers on Au(111) surface and epoxy resin. Applied Surface Science 255: 6451-6459.
66. Jiang, S. (2002): Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111). Molecular Physics 100: 2261-2275.
67. Jimenez-Cadena, G.; Riu, J.; Rius, F. X. (2007): Gas sensors based on nanostructured materials. Analyst 132: 1083-1099.
68. Jin, L.; Bower, C.; Zhou, O. (1998): Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters 73: 1197–1199.
69. Jing, G. Y.; Duan, H. L.; Sun, X. M.; Zhang, Z. S.; Xu, J.; Li, Y. D.; Wang, J. X.; Yu, D. P. (2006): Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B 73: 235409.
70. Juhasz, R.; Elfstrom, N.; Linnros, J. (2005): Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Letters 5: 275-280.
71. Kang, J. W.; Hwang, H. J. (2001): Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology 12: 295-300.
72. Kendall, K. (2001): Molecular adhesion and its applications: The sticky universe. Kluwer. (New York)
73. Khor, K. E.; Das Sarma, S. (1988): Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. Physical Review B 38: 3318-3322.
74. Kiang, C. H.; Endo. M.; Ajayan, P. M.; Dresselhaus, G.; Dresslhaus, M. S. (1998): Size effect in carbon nanotubes. Physical Review Letter 81: 1869-1872.
75. Kiely, J. D.; Houston, J. E. (1999): Contact hysteresis and friction of alkanethiol self-assembled monolayers on gold. Langmuir 15: 4513-4519.
76. Kim, J. K.; Lebbai, M.; Lam, Y. M.; Hung, P. Y. P.; Woo, R. S. C. (2005): Effects of moisture and temperature ageing on reliability of interfacial adhesion with black copper oxide substrate. Journal of Adhesion Science and Technology 19: 427-444.
77. Kondo, Y.; Takayanagi, K. (1997): Gold nanobridge stabilized by surface structure. Physics Review Letters 79: 3455-3458.
78. Kondo, Y.; and Takayanagi, K. (2000): Synthesis and characterization of helical multi-shell gold nanowires. Science 289: 606-608.
79. Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. (1998): Young’s modulus of single-walled nanotubes. Physical Review B 58: 14013-14019.
80. Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. (1991): Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society 113: 7152–7167.
81. Leng, Y.; Jiang, S. (2000): Atomic indentation and friction of self-assembled monolayers by gybrid molecular simulations. Journal of Chemical Physics 113: 8800-8806.
82. Lennard-Jones, J. E. (1924): The determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proceedings of Royal Society. (London)
83. Li, L.; Yu, Q.; Jiang, S. (1999): Quantitative measurements of frictional properties of n-alkanethiols on Au(111) by scanning force microscopy. The Journal of Physical Chemistry B 103: 8290-8295.
84. Li, C. Y.; Chou, T. W. (2003a): Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composite Science and Technology 63: 1517-1524.
85. Li, C. Y.; Chou, T. W. (2003b): A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solid and Structures 40: 2487-2499.
86. Li, X.; Gao, H.; Murphy, C. J.; Caswell, K. K. (2003c): Nanoindentation of Silver Nanowires. Nano Letters 3: 1495-1498.
87. Li, X.; Nardi, P.; Baek, C. W.; Kim, L. M.; Kim, Y. K. (2005): Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope. Journal of Micromechanics and Microengineering 15: 551-556.
88. Lier, G. V.; Alsenoy, C. V.; Doran, V. V.; Geerlings, P. (2000): Ab intitio study of the elastic properties of single-walled carbon nano¬tubes and grapheme. Chemical Physics Letters 326: 181-185.
89. Liew, K. M.; He, X. Q.; Wong, C. H. (2004): On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia 52: 2521-2527.
90. Lin, Y. M.; Rabin, O.; Cronin, S. B.; Ying, J. Y.; Dresselhaus, M. S. (2002): Semimetal-semiconductor transition in Bi1-xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letters 81: 2403-2405.
91. Lincoln, R. C.; Koliwad, K. M.; Ghate, P. B. (1967): Morse-potential evaluation of second- and third-order elastic constants of some cubic metals. The Physical Review 157: 463-466.
92. Ling, X.; Atluri, S. N. (2006): A lattice-based cell model for calculating thermal capacity and expansion of single wall carbon nanotubes. Computer Modeling in Engineering and Sciences 14: 91-100.
93. Liu, D. S.; Tsai, C. Y.; Lyu, S. R. (2009): Determination of temperature-dependent elasto-plastic properties of thin-film by MD nanoindentation simulations and an inverse GA/FEM computational scheme. Computers, Materials, and Continua 11: 147-164.
94. Lourie, O; Wagner, H. D. (1998): Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. Journal of Materials Research 13: 2418-2422.
95. Lu, J. P. (1997): Elastic properties of carbon nanotubes and nano¬ropes. Physical Review Letters 79: 1297-1300.
96. Maier, G. (2004): The search for low-ε and ultra-low-ε dielectrics: how far can you get with polymers? part 2: materials, structures, properties. IEEE Electrical Insulation Magazine 20, No. 3: 6-24.
97. Maiti, A. (2002): Select applications of carbon nanotubes: field-emission devices and electromechanical sensors. Computer Modeling in Engineering and Sciences 5: 589-600.
98. Mar, W.; Klein, M. L. (1994): Molecular dynamics study of the self-assembled monolayer composed of S(CH2)14CH3 molecules using an all-atoms model. Langmuir 10, 188-196.
99. Martin, C. R.; Menon V. P. (1995): Fabrication and evaluation of nanoelectrode ensembles. Analytical Chemistry 67: 1920-1928.
100. Maruyama, S. (2000): Molecular dynamics method for microscale heat transfer. Advances in Numerical Heat Transfer 2: 189-226.
101. Mawhinney, D. B.; Naumenko, V.; Kuznetsova, A.; Yates Jr., J. T.; Liu, J.; Smalley, R. E. (2000): Surface defect site density on single walled carbon nanotubes by titration. Chemical Physics Letters 324: 213-216.
102. McDermott, M. T.; Green, J. B. D.; Porter, M. D. (1997): Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: structural basis of microscopic friction and wear. Langmuir 13: 2504-2510.
103. Mehrez, H.; Ciraci, S. (1997): Yielding and fracture mechanisms of nanowires. Physics Review B 56: 12632-12642.
104. Meo, M; Rossi, M. (2006): Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling. Composites Science and Technology 66: 1597-1605.
105. Mercuri, F.; Sgamellotti, A. (2007): Theoretical investigations on the functionalization of carbon nanotubes. Inorganica Chimica Acta 360: 785-793.
106. Mielke, S. L.; Troya, D.; Zhang, S.; Li, J. L.; Xiao, S.; Car, R.; Ruoff, R. S.; Schatz, G. C.; Belytschko, T. (2004): The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters 390: 413-420.
107. Morales, A. M.; Lieber, C. M. (1998): A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279: 208-211.
108. Muller, R.; Heckmann, K.; Habermann, M.; Paul, T.; Stratmann, M. (2000): New adhesion promoters for copper leadframes and epoxy resin. The Journal of Adhesion 72: 65-83.
109. Nagoya, A.; Morikawa, Y. (2007): Adsorption states of methylthiolate on the Au(111) surface. Journal of Physics: Condensed Matter 19: 365245.
110. Nasdala, L.; Ernst, G.; Lengnick, M.; Rothert, H. (2005): Finite element analysis of carbon nanotubes with Stone-Wales defects. Computer Modeling in Engineering and Sciences 7: 293-304.
111. Natelson, D.; Willett, R. L.; West, K. W.; Pfeiffer, L. N. (2000): Fabrication of extremely narrow metal wires. Applied Physics Letters 77: 1991-1993.
112. Natsuki, T.; Endo, M. (2004): Stress simulation of carbon nanotubes in tension and compression. Carbon 42: 2147-2151.
113. Nordlund, K.; Keinonen, J; Mattila, T. (1996): Formation of ion irradiation induced small-scale defects on graphite surfaces. Physical Review Letters 77: 699-702.
114. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. (1990): Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. Journal of the American Chemical Society 112: 558-569.
115. Orlikowski, D.; Nardelli, B.; Bernholc, J.; Roland, C. (2000): Theoretical STM signatures and transport properties of native defects in carbon nanotubes. Physical Review B 61: 14194-14203.
116. Park, G. S.; Choi, W. B., Kim, J. M., Choi, Y. C.; Lee, Y. H.; Lim, C. B. (2000): Structural investigation of gallium oxide (β-Ga2O3) nanowires grown by arc-discharge. Journal of Crystal Growth 220, 494-500.
117. Pasianot, R.; Savino, E. J. (1992): Embedded-atom-method interatomic potentials for hcp metals. Physical Review B 45: 12704-12710.
118. Pauling, L. (1960): The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry. Cornell university press. (New York)
119. Pertsin, A. J.; Grunze, M. (1994): Low-energy structures of a monolayer of octadecanethiol self-assembled on Au(111). Langmuir 10: 3668-3674.
120. Poirier, G. E.; Tarlov, M. J. (1994): The c(4X2) superlattice of n-alkanethiol monolayers self-assembled on Au(111). Langmuir 10: 2853-2856.
121. Poncharal, P; Wang, Z. L.; Ugarte, D.; de Heer Popov, W. A. (1999): Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283: 1513-1516.
122. Popov, V. N.; Van Doren, V. E.; Balkanski, M. (2000): Elastic properties of single-walled carbon nanotubes. Physical Review B 61: 3078-3084.
123. Prato, M.; Moroni, R.; Bisio, F.; Rolandi, R.; Mattera, L.; Cavalleri, O.; Canepa, M. (2008): Optical characterization of thiolate self-assembled monolayers on Au(111). The Journal of Physical Chemistry C 112: 3899-3906.
124. Prober, D. E.; Feuer, M. D.; Giordano, N. (1980): Fabrication of 300- metal lines with substrate-step techniques. Applied Physics Letters 37: 94-96.
125. Qian, D.; Liu, W. K.; Ruoff, R. S. (2001): Mechanics of C60 in nanotubes. Journal of Physical Chemistry B 105: 10753-10758.
126. Rapino, S.; Zerbetto, F. (2007): Dynamics of thiolate chains on a gold nanoparticle. Small 3: 386-388.
127. Rappe, A. K.; Casewit, C. J. (1997): Molecular mechanics across chemistry. University Science Books. (New York)
128. Ron, H.; Cohen, H.; Matlis, S.; Rappaport, M.; Rubinstein, I. (1998): Self-assembled monolayers on oxidized metals. 4. Superior n-alkanethiol monolayers on copper. The Journal of Physical Chemistry B 102: 9861-9869.
129. Rose, J. H.; Smith, J. R.; Guinea, F.; Ferrante, J. (1984): Universal features of the equation of state of metals. Physical Review B 29: 2963-2969.
130. Roth, S.; Baughman, R. H. (2002): Actuators of individual carbon nanotubes. Current Applied Physics 2: 311-314.
131. Rubio-Bollinger, G.; Bahn, S. R.; Agrait, N.; Jacobsen, K. W.; Vieira, S. (2001): Mechanical properties and formation mechanisms of a wire of single gold atoms. Physical Review Letters 87: 026101.
132. Rusu, P. C.; Brocks, G. J. (2006): Surface dipoles and work functions of alkylthiolates and fluorinated alkylthiolates on Au(111). The Journal of Physical Chemistry B 110: 22628-22634.
133. Sakai, S.; Tanimoto, H.; Mizubayashi, H. (1999): Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Materialia 47: 211-217.
134. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. (1992): Electronic structure of chiral graphene tubules. Applied Physics Letters 60: 2204-2206.
135. Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T.; Burnham, N. A.; Forro, L. (1999): Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters 82: 944-947.
136. Schreiber, F. (2004): Self-assembled monolayers: from 'simple' model systems to biofunctionalized interfaces. Journal of Physics: Condensed Matter 16: R881-R900.
137. Shen, S.; Atluri S. N. (2004a): Computational nano-mechanics and multi-scale simulation. Computers, Materials & Continua 1: 59-90.
138. Shen, S.; Atluri S. N. (2004b): Atomic-level stress calculation and continuum-molecular system equivalence. Computer Modeling in Engineering and Sciences 6: 91-104.
139. Shintani, K.; Narita, T. (2003): Atomistic study of strain dependence of Poisson’s ratio of single-walled carbon nanotubes. Surface Science 532-535: 862-868.
140. Snyder, R. G. (1979): Vibrational correlation splitting and chain packing for the crystalline n‐alkanes. Journal of Chemical Physics 71: 3229-3235.
141. Souriau, J. S.; Brun, J.; Franiatte, R.; Gasse, A. (2004): Development on Wafer-level Anisotropic Conductive Film for Flip-chip Interconnection. Proc 54th Electronic Components and Technology Conference: 155-158.
142. Srivastava, P.; Chapman, W. G.; Laibinis, P. E. (2009a): Molecular dynamics simulation of oxygen transport through n-alkanethiolate self-assembled monolayers on gold and copper. Journal of Physical Chemistry B 113: 456-464.
143. Srivastava, P.; Chapman, W. G.; Laibinis, P. E. (2009b): Molecular dynamics simulation of oxygen transport through ω-alkoxy-n-alkanethiolate self-assembled monolayers on gold and copper. Langmuir 25: 2689-2695.
144. Stillinger, F. H.; Weber, T. A. (1985): Computer simulation of local order in condensed phase of silicon. Physical Review B 31: 5262-5271.
145. Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. (2000): A simple route to annihilate defects in silicon nanowires. Chemical Physics Letters 328: 346-349.
146. Tersoff, J. (1988): New empirical approach for the structure and energy of covalent systems. Physical Review B 37: 6991-7000.
147. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. (1996): Crystalline ropes of metallic carbon nanotubes. Science 273: 483.
148. Thostenson, E. T.; Ren, Z.; Chou, T. W. (2001): Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology 61: 1899-1912.
149. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. (1996): Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381: 678-680.
150. Tseng, A. A.; Notargiacomo, A.; Chen, T. P. (2005): Nanofabrication by scanning probe microscope lithography: A review. The Journal of Vacuum Science and Technology B 23: 877-894.
151. Tserpes, K. I.; Papanikos, P.; Tsirkas, S. A. (2006): A progressive fracture model for carbon nanotubes. Composites: Part B 37: 662-669.
152. Tupper, K. J.; Brenner, D. W. (1994): Compression-induced structural transition in a self-assembled monolayer. Langmuir 10: 2335-2338.
153. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, C. (2010): Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society reviews 39: 1805-1834.
154. Vezenov, D. V.; Zhuk, A. V.; Whitesides, G. M.; Lieber, C. M. (2002): Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents. Journal of the American Chemical Society 124: 10578-10588.
155. Wang, Y.; Tománek, D.; Bertsch G. F. (1991): Stiffness of a solid composed of C60 clusters. Physical Review B 44: 6562-6565.
156. Wang, Y. T.; Cheng, C. L.; Shih, Y. C.; Kan, H. C.; Chen, C. H.; Hu, J. J.; Su, Z. Y. (2007): Molecular dynamics simulation of the binding interaction between hormone glucagon protein and self-assembled monolayer molecules. Chinese Journal of Chemistry 25: 1090-1093.
157. Wei, J.; Chin, L. C.; Ang, X. F.; Chen, Z.; Wong, C. C. (2006): Enhancing direct metal bonding with self-assembled monolayers. SIMTech Technical Reports 7: 178-181.
158. Wei, F. L. (2007): Effects of mechanical properties on the reliability of Cu-low-k metallization systems, Ph.D dissertation, Department of Materials Science and Engineering, Massachusetts Institute of Technology.
159. Wesslein, M.; Heintz, A.; Lichtenthaler, R. N. (1990): Pervaporation of liquid mixtures through poly (vinyl alcohol) (pva) membranes. I. study of water containing binary systems with complete and partial miscibility. Journal of Membrane Science 51: 169-179.
160. Wiberg, K. B. (1965): A scheme for strain energy minimization. Application to the cycloalkanes. Journal of the American Chemical Society 87: 1070-1078.
161. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. (1997): Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nano¬tubes. Science 277: 1971-1975.
162. Wong, C. K. Y.; Gu, H.; Xu, B.; Yuen, M. M. F. (2006): A new approach in measuring Cu–EMC adhesion strength by AFM. IEEE Transaction on Components and Packaging Technologies, 29: 543-550.
163. Wong, K. Y.; Fan, H.; Yuen, M. F. (2008): Interfacial adhesion study for SAM induced covalent bonded copper-EMC interface by Molecular Dynamic Simulation. IEEE Transactions on Components and Packaging Technologies 31: 297-308.
164. Wu, H. A. (2004): Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Computational Materials Science 31: 287-291.
165. Wu, B.; Heidelberg, A.; Boland, J. J. (2005): Mechanical properties of ultrahigh- strength gold nanowires. Nature Materials 4: 525-529.
166. Wu, H. A. (2006): Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications 33: 9-16.
167. Wu, Y.; Zhang, X.; Leung, A. Y. T.; Zhong, W. (2006): An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes. Thin-Walled Structures 44: 667-676.
168. Wu, C. J.; Chou, C. Y.; Han, C. N.; Chiang, K. N. (2009): Estimation and validation of elastic modulus of carbon nanotubes using nano-scale tensile and vibrational analysis. Computer Modeling in Engineering and Science 41: 49-68.
169. Xiao, J. R.; Gama, B. A.; Gillespie Jr, J. W. (2005): An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. International Journal of Solid and Structures 42: 3075-3092.
170. Xiao, S.; Hou, W. (2006): Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fullenrenes, Nanotubes and Carbon Nanostructures 14: 9-16.
171. Xie, G. Q.; Han, X.; Long, S. Y. (2007): Characteristic of waves in a multi-walled carbon nanotube. Computers, Materials & Continua 6: 1-12.
172. Xie, G. Q.; Long, S. Y. (2006): Elastic vibration behaviors of carbon nanotubes based on micropolar mechanics. Computers, Materials & Continua 4: 11-20.
173. Yakobson, B. I.; Samsonidze, G.; Samsonidze, G. G. (2000): Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38: 1675-1680.
174. Yin A. J.; Li J.; Jian, W.; Bennett, A. J.; Xu, J. M. (2001): Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters 79: 1039-1041.
175. Yourdshahyan, Y.; Rappe, A. M. (2002): Structure and energetics of alkanethiol adsorption on the Au(111) surface. Journal of Chemical Physics 117: 825-833.
176. Yu, M.; Lourie, O.; Dyer, M.; Moloni, K.; Kelly, T.; Ruoff, R. (2000): Strength and breaking mechanism of multiwalled carbon nano¬tubes under tensile load. Science 287: 637-640.
177. Yu, H.; Buhro, W. E. (2003): Solution-liquid-solid growth of soluble GaAs nanowires. Advanced Materials 15: 416-419.
178. Zhou, L. G.; Huang, H. (2004): Are surfaces elastically softer or stiffer. Applied Physics Letters 84: 1940-1942.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *