帳號:guest(3.145.56.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝仁傑
作者(外文):Jen-Chieh Hsieh
論文名稱(中文):鎳金屬錯合物在苯炔、異氰酸酯及1,2-二碘苯衍生物的耦合與合環反應上之應用
論文名稱(外文):Application of Nickel Complexes on the Coupling Reactions and Annulations involving Benzyne, Isocyanate and 1,2-Diiodobenzene Derivatives
指導教授(中文):鄭建鴻
指導教授(外文):Chien-Hong Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:917408
出版年(民國):95
畢業學年度:94
語文別:英文
論文頁數:428
中文關鍵詞:苯炔異氰酸酯二鹵芳香環
外文關鍵詞:BenzyneIsocyanateDihaloareneAlleneDiyenTriazole
相關次數:
  • 推薦推薦:0
  • 點閱點閱:518
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
摘要

本論文旨在描述利用有機鎳金屬催化以及的有機雙極(Dipolar)反應來完成合環以及耦合反應。本論文主要共分為四個章節,並且在每一個章節內包含兩個同類型反應;利用相似的反應條件在不同的反應物下合成出不同的產物。首先在第一章我們描述利用苯炔(Benzyne)在有機鎳金屬催化下分別與一二雙希化合物(allene)和雙炔化合物(diyne)進行合環反應而形成九、十-二氫化菲(9,10-dihydrophenanthrene)與萘(naphthalene)衍生物。而在第二章中我們則要探討苯炔前驅物與疊氮化合物(Azide)及異氰酸酯化合物(Isocyanate)在一三雙極環化加成反應(1,3-dipolar cycloaddition)下的環化與耦合反應。第三章將針對異氰酸酯化合物(Isocyanate)與鄰碘苯甲酸酯化合物(β-Iodobenzoate)和芳香環鹵化物(Halobenzene)的環化及耦合反應形成亞胺(Imide)和醯胺(Amide)來做研究。最後在第四章的部分我們則要討論一、二雙鹵芳香環(1,2-Dihalidearene)與炔化合物(Alkyne)以及雙炔化合物的合環反應形成一二三四-四取代的萘衍生物(1,2,3,4-Tetrasubstituted naphthalene)。
第一章我們描述利用一二雙稀和雙炔化合物在有機鎳金屬催化下與苯炔進行環化加成反應。苯炔前驅物在有機鎳金屬錯合物NiBr2(dppe)以及鋅粉(Zn)的催化系統中,加入過量的銫氟化物(CsF)並利用乙晴(Acetonitrile)作為溶劑在80 oC的條件下可以得到二氫化菲以及萘衍生物。其中在二氫化菲衍生物的合環反應方面具有非常高度的立體選擇性與化學選擇性;然而在萘衍生物的合環反應中則具有絕佳官能基容忍性,同時也對合環時環的大小有非著常高度的相容性。 在反應機構的研究方面我們推論這兩個合環反應同樣都是利用零價的有機鎳金屬錯合物與苯炔及另一不飽和三鍵或雙鍵進行還原偶合反應(Reductive coupling)[或是氧化合環反應(Oxidative cyclization)]形成二價的五環雙稀有機鎳金屬錯合物(Nickelacyclopentadiene)的中間體(Intermediate),隨後另一分子的三鍵化合物對此中間體進行插入反應,最後在經由還原減位(Reductive elimination)而形成相對應的二氫化菲與萘化合物。
第二章則旨在探討苯炔化合物與疊氮化合物的環化反應以及和異氰酸酯化合物間的耦合反應。 其中,苯炔前驅物在過量的銫氟化物和乙晴溶劑中會進行一三雙極環化加成反應而形成一氫苯並三唑化合物。此環化反應不但具有相當高的產率,且對於官能基有著絕佳的容忍性。此外,苯炔前驅物在過量的銫氟化物和乙晴溶劑的條件下也可以對異氰酸酯化合物進行耦合反應,此耦合反應經由相當獨特的反應機構來形成雙取代芳香環胺類的衍生物。
第三章是研究在有機鎳金屬錯合物的催化下異氰酸酯與鄰碘苯甲酸酯化合物和芳香環鹵化物的環化及耦合反應。 以有機鎳金屬錯合物NiBr2(dppe)和鋅粉作為催化系統的情況下, 在80 oC的乙晴溶劑裡額外加入配位基dppe及三乙胺。異氰酸酯與鄰碘苯甲酸酯化合物和芳香環鹵化物可以進行環化加成反應與耦合反應而形成相對應的亞胺和醯胺衍生物。其中,亞胺的合環反應具有高度的官能基容忍性,並且有別於傳統有機反應可以合成出高度非對稱的亞胺衍生物。然而在醯胺的耦合反應中則具有較低的反應性。
第四章鄰碘芳香環在有機鎳金屬催化下對炔類以及雙炔化合物的合環反應中,主要分為兩個部份來提供討論。首先,我們將探討在有機鎳金屬錯合物NiBr2(dppe)以及鋅粉(Zn)的催化系統中,加入過量的配位基DPPE並利用乙晴作為溶劑在80 oC的條件下可以得到四取代萘衍生物。其次,我們將此催化反應延伸至雙炔的系統下則可以更進一步地在萘衍生物上增加環數。此型態的合環反應不但具有相當好的官能基容忍性以及產率,更重要的是它提供了相當方便的多苯環衍生物合成的方法。
The thesis describes dipolar and nickel-catalyzed organic synthesis leading to coupling and cyclization of heterocyclic compounds. It is subdivided into four topics in four chapters. The first chapter describes nickel-catalyzed cyclization of aryne precursors with allene and diyne derivatives resulting in the formation of 9,10-dihydrophenanthrene and naphthalene derivatives in moderate to excellent yields. The second chapter extends the aryne precursors to precede 1,3-dipolar cycloaddition and coupling reaction with azide and isocyanate derivatives to form benzotriazole and diphenylamine derivatives in good to excellent yields. The third chapter deals with reaction of isocyanates with β-iodobenzoate and halobenzene derivatives to form imides and amides. The fourth chapter consists of cycloaddition of 1,2-dihalidearenes with alkynes and diynes to form 1,2,3,4-tetrasubstituted naphthalene derivatives.
The first chapter describes the nickel-catalyzed cycloaddition of arynes with allenes and diynes. The arynes could be proceeded cycloaddition with allenes and diynes in the presence of Ni(dppe)Br2, zinc powder and cesium fluoride in acetonitrile at 80 oC to afford the corresponding phenanthrene and naphthalene derivatives in moderate to excellent yields. The phenanthrene derivatives give high regio-, stereo- and chemo selectivity; in contract the naphthalene derivatives afford excellent functional group and fused ring size tolerance. The mechanism of these two reactions is through the intermediate of nickelacyclopentadiene by Ni(0) complex with two molecules of triple bonds, followed by insertion of another one and reductive elimination to form the corresponding products.
The second chapter describes the coupling reaction of arynes with azides and isocyanates. The arynes undergo the 1,3-dipolar cycloaddition with azides to form the 1H-benzo[d][1,2,3]triazole derivatives in good to excellent yields with high functional groups tolerance. The arynes could also precede the very unique fluoride promoted coupling reaction with isocyanates in moderate to good yields.
The third chapter describes the nickel-catalyzed cycloaddition and coupling reaction of isocyanates with β-iodiesters and arylhalide. In the presence of NiBr2(dppe), additional dppe and zinc powder in acetonitrile at 80 oC, the coupling reaction of isocyanates with β-iodiesters and arylhalide could be succeed to proceed and afford the corresponding imide and amide derivatives in moderate to excellent yields. The reaction of forming imides shows the excellent functional group tolerance, however, the reaction of forming amides reveals the lower yields with limited cases.
The fourth chapter describes the nickel-catalyzed cycloaddition of 1,2-dihaloarenes with alkynes and diynes. The 1,2-dihaloarenes undergo cycloaddition with alkynes and diynes in the presence of Ni(dppe)Br2, additional dppe and zinc powder in acetonitrile at 100 oC to afford the corresponding 1,2,3,4-tetra substituted naphthalene products in moderate to excellent yields. Variou alkynes and diynes react with 1,2-dihaloarene derivatives to give good functional group tolerance. The mechanism is proposed by the oxidative addition first, then insertion of a triple bond and coupling with another carbon-halide bond to form the intermediate of nickelacyclobenzopentene. Finally, another triple inserts to the nickel complex and proceeds reductive elimination to afford the corresponding naphthalene products.
Table of contents
Page
CHINESE ABSTRACT Ⅰ
ABSTRACT Ⅲ
LIST OF SCHEMES Ⅶ
LIST OF TABLES ⅩⅠ

Page
ABSTRACT Ⅰ
LIST OF ABBREVIATION Ⅲ
LIST OF SCHEMES Ⅵ
LIST OF TABLES Ⅹ
CHAPTER 1: Nickel-Catalyzed Cycloaddition of Arynes with Allenes and Diynes: A Novel Route to Phenanthrene and Naphthalene Derivatives
Introduction 2
Section 1
Result and Discussion 18
Conclusion 35
Section 2
Result and Discussion 36
Conclusion 47
Experimental Section 48
Reference 77
CHAPTER 2: Coupling Reactions of Arynes with Azides and Isocyanates: A Highly Efficient Route to 1H-Benzotriazoles and The Study of Fluoride Promoted Coupling Reaction of Benzynes
Introduction 80
Section 1
Result and Discussion 94
Conclusion 109
Section 2
Result and Discussion 110
Conclusion 120
Experimental Section 121
Reference 141
CHAPTER 3: Nickel-Catalyzed Coupling of Isocyanates with 1,3-Iodoesters and Halobenzenes: A Novel Method for the Synthesis of Imide and Amide Derivatives
Introduction 146
Section 1
Result and Discussion 158
Conclusion 172
Section 2
Result and Discussion 173
Conclusion 183
Experimental Section 184
Reference 204
CHAPTER 4: Nickel-Catalyzed Cycloaddition of Dihaloarenes with Alkynes and Diynes: A Efficient Route to Polysubstituted Naphthalene Derivatives
Introduction 208
Section 1
Result and Discussion 225
Conclusion 243
Section 2
Result and Discussion 244
Conclusion 258
Experimental Section 259
Reference 277
1H NMR and 13C NMR SPECTRA 281
References:
Chapter 1
1.Reviews: (a). N. E. Schore, Chem. Rev. 1988, 88, 1081. (b). B. M. Trost, Science 1991, 254, 1471. (c). K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl. 1984, 23, 539. (d). M. Lautens, W. Klute and W. Tam, Chem. Rev. 1996, 96, 49. (e). D. B. Grotjahn, Transition Metal Alkyne Complexes: Transition Metal-Catalyzed Cyclotrimerization. In Comprehensive Organometallic Chemistry II; E. W. Abel, F. G. A. Stone, G. Wilkinson, Eds.; Pergamon: Oxford, 1995, Vol.12, p 741. (f). S. Saito and Y. Yamamoto, Chem. Rev. 2000, 100, 2901.
2.(a). Z. Wang, X. Lu, A. Lei and Z. Zhang, J. Org. Chem. 1998, 63, 3806. (b). N. Chatani, N. Amishiro and S. Murai, J. Am. Chem. Soc. 1991, 113, 7778. (c). H. Nakamura, J. G. Shim and Y. Yamamoto, J. Am. Chem. Soc. 1997, 119, 8113. (d). M.-S. Wu, D. K. Rayabarapu and C.-H. Cheng, J. Am. Chem. Soc. 2003, 125, 12426.
3.Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett, 1983, 1211.
4.(a). D. Pena, S. Escudero, D. Perez, E. Guitian and L. Castedo, Angew. Chem., Int. Ed. Engl. 1998, 37, 2659. (b). D. Pena, S. Escudero, D. Perez, E. Guitian and L. Castedo, Org. Lett. 1999, 1 (10), 1555. (c). D. Pena, S. Escudero, D. Perez, E. Guitian and L. Castedo, Org. Lett. 2000, 2 (11), 1629.
5.(a). D. Pena, D. Perez, E. Guitian and L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827. (b). D. Pena, D. Perez, E. Guitian and L. Castedo, J. Org. Chem. 2000, 65, 6944.
6.(a). E. Yoshikawa and Y. Yamamoto, Angew. Chem., Int. Ed. Engl. 2000, 39, 173. (b). E. Yoshikawa, K. V. Radhakrishnan and Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280.
7.(a). D. Pena, D. Perez, E. Guitian and L. Castedo, Eur. J. Org. Chem. 2003, 1238. (b). Y. Sato, T. Tamura and M. Mori, Angew. Chem., Int. Ed. Engl. 2004, 43, 2436.
8.T. T. Jayanth, M. Jeganmohan and C.-H. Cheng, J. Org. Chem. 2004, 69, 8445.
9.N. Chatani, A. Kamitani, M. Oshita, Y. Fukumoto and S. Muri, J. Am. Chem. Soc. 2001, 123, 12686.
10.H. Yoshida, J. Ikadai, M. Shudo, J. Ohshita and A. Kunai, J. Am. Chem. Soc. 2003, 125, 6638.
11.Z. Liu and R. Larock, Org. Lett., 2004, 6, 3739.
12.X. Zhang and R. Larock, Org. Lett., 2005, 7, 3973-3976.
13.Z. Liu, X. Zhang and R. Laroch, J. Am. Chem. Soc. 2005, 127, 15716.
14.T. T. Jayanth and C. –H. Cheng, Chem. Commun., 2006, 894.
15.(a). H. Yoshida, Y. Honda, E. Shirakawa and T. Hiyama, Chem. Commun. 2001, 1880. (b). H. Yoshida, Y. Honda, E. Shirakawa and T. Hiyama, Angew. Chem. Int. Ed. 2002, 41, 3247.
16.E.Yoshikawa, K. V. Radhakrishnan and Y.Yamamoto, Tetrahedron Lett. 2000, 41, 729.
17.M. Jeganmorhan and C. –H. Cheng, Org. Lett., 2004, 6,2821.
18.T. T. Jayanth, M. Jeganmorhan and C. –H. Cheng, Org. Lett., 2005, 7, 2921-2924.
19.H. –M. Chang and C. –H. Cheng, Org. Lett., 2000, 2, 3439.
20.H. –M. Chang and C. –H. Cheng, J. Org. chem., 2000, 65, 1767.
21.F. –Y. Yang and C. –H. Cheng, J. Am. Chem. Soc., 2001, 123, 761.
22.F. –Y. Yang and C. –H. Cheng, J. Am. Chem. Soc., 2003, 125, 12576.
23.K. –J. Chang, D. K. Rayabarapu, F. –Y. Yang and C. –H. Cheng, J. Am. Chem. Soc., 2005, 127, 12.
24.M. Shanmugasundaram, M. –S. Wu and C. –H. Cheng, Org. Lett., 2001, 3, 4233.
25.K. Parthasarathy, M. Jeganmorhan and C. –H. Cheng, Org. Lett., 2006, 8,621.
26.M. Meguro and Y. Yamamoto, J. Org. chem., 1999, 64, 694.
27.X. Gai, R. Grigg, S. Collard and J. E. Muir, Chem. Commun. 2001, 1712.
28.S. –K. Kang, T. -G. Baik, A. N. Kulak, Y. –H. Ha, Y. Lim and J. Park, J. Am. Chem. Soc., 2000, 122, 11529.
29.S. Saito, K. Hirayama, C. Kabuto and Y. Yamamotom, J. Am. Chem. Soc., 2000, 122, 10776.
30.A. Jeevanandam, R. P. Korivi, I. –W. Huang and C. –H. Cheng, Org. Lett., 2002, 4, 807.
31.M. Shanmugasundaram, M. –S. Wu, M. Jeganmohan, C. W. Huang and C. –H. Cheng, J. Org. chem., 2002, 67, 7724.
32.Y. Yamamoto, R. Ogawa and K. Itoh, J. Am. Chem. Soc., 2001, 123, 6189.
33.Y. Yamamoto, H. Takagishi and K. Itoh, J. Am. Chem. Soc., 2002, 124, 28.
34.Y. Yamamoto, H. Takagishi and K. Itoh, J. Am. Chem. Soc., 2002, 124, 6844.
35.Y. Yamamoto, H. Kitahara, R. Ogawa and K. Itoh, J. Org. chem., 1998, 63, 9610.
36.Y. Yamamoto, H. Takagishi and K. Itoh, Org. Lett., 2001, 3, 2117.
37.L. V. R. Bonaga, H.- C. Zhang, D. A. Gauthier, I. Reddy, and B. E. Maryanoff, Org. Lett., 2003, 5, 4537.
38.H. A. Duong, M. J. Ctoss and J. Louie, J. Am. Chem. Soc., 2004, 126, 11438.
39.(a). H. Tanaka, A. K. M. A. Hai, H. Ogawa and S. Torii, Synlett, 1993, 835. (b). J. A. Marshall and X. J. Wang, J. Org. Chem. 1992, 57, 1242.
40.C. –W. Huang, M. Shanmugasundaram, H. –M. Chang and C. –H. Chang, Tetrahedron, 2003, 59, 3635.
41.(a) J. J. Eisch and J. E. Glle, J. Organomet. Chem. 1975, 96, C23. (b) D. R. McAlister, J. E. Bercaw and R. G. Bergman, J. Am. Chem. Soc. 1977, 99, 1666.

Chapter 2
1.Reviews : (a) R. W. Hoffmann, Dehydrobenzene and Cycloalkynes, Academic Press, New York, 1967. (b) H. Hart, in The Chemistry of triplebonded Functional groups, Supplement C2, ed. S. Patai, Wiley, Chichester, 1994, ch. 18.(c) H. Pellissier and M. Santelli, Tetahedron, 2003, 59, 701.
2.Review: S. V. Kessar in Comprehensive Organic synthesis, Vol. 4 (Eds.: B.M. Trost, I. Fleming, C. H. Heathcock), Pergamon, Oxford, 1991, pp. 483-515.
3.(a) N. Petragnani and V. G. Toscano, Chem. Ber. 1970, 103, 1652-1653. (b) J. Nakayama, T. Tajiri and M. Hoshino, Bull. Chem. Soc. Jpn. 1986, 59, 2907-2908. (c) Y. Sato, Y. Kobayashi, M. Sugiura and H. Shirai, J. Org. Chem. 1978, 43, 199-202. (d) H. Yoshida, Y. Honda, E. Shirakawa and T. Hiyama, Chem. Commun. 2001, 1880-1881.
4.H. Yoshida, T. Terayama, J. Ohshita and A. Kunai, Chem. Commun., 2004, 1980-1981.
5.H. Yoshida, T. Minabe, J. Ohshita and A. Kunai, Chem. Commun., 2005, 3454-3456.
6.H. Yoshida, E. Shirakawa, Y. Honda and T. Hiyama, Angew. Chem. Int. Ed. 2002, 41, 3247-3249.
7.Z. Liu and R. C. Larock, J. Am. Chem. Soc. 2005, 127, 13112-13113.
8.H. Yoshida, M. Watanabe, J. Ohshita and A. Kunai, Chem. Commun. 2005, 3292-3294.
9.H. Yoshida, M. Watanabe, J. Ohshita and A. Kunai, Tetrahedron Letters. 2005, 46, 6729-6731.
10.U. K. Tambar and B. M. Stoltz, J. Am. Chem. Soc. 2005, 127, 5340-5341.
11.H. Yoshida, H. Fukushima, J. Ohshita and A. Kunai, Angew. Chem. Int. Ed. 2004, 43, 3935-3938.
12.H. Yoshida, H. Fukushima, J. Ohshita and A. Kunai, Tetrahedron Letters. 2004, 45, 8659-8662.
13.H. Yoshida, S. Sugiura and A. Kunai, Org. Lett., 2002, 4, 2767-2769.
14.K. Okuma, A. Okada, Y. Koga and Y. Ypkomori, J. Am. Chem. Soc. 2001, 123, 7166-7167.
15.E. Ihara, A. Kurokawa, T. Koda, T. Muraki, T. Itoh and K. Inoue, Macromolecules, 2005, 38, 2167-2172.
16.Z. Liu and R. C. Larock, Org. Lett., 2003, 5, 4673-4675.
17.Z. Liu and R. C. Larock, Org. Lett., 2004, 6, 99-102.
18.(a) D. A. Evans and K. M. DeVries In Glycopeptide Antibiotics,Drugs and the Pharmaceutical Science, R. Ed. Nagarajan, Marcel Decker, Inc.: New York, 1994, 63, 63-104. (b) V. E. Deshpande and N. J. Gohkhale, Tetrahedron Lett., 1992, 33, 4213-4216.
19.(a) C. Fotsch, J. D. Sonnenberg, N. Chen, C. Hale, W. Karbon and M. H. Norman, J. Med. Chem., 2001, 44, 2344-2356. (b) S. B. Singh and G. R. Pettit, J. Org. Chem., 1990, 55, 2797-2800.
20.Z. Liu and R. C. Larock, Org. Lett., 2004, 6, 3739-3741.
21.J. Zhao and R. C. Larock, Org. Lett., 2005, 7, 4273-4275.
22.A. S.Pilcher and P. Deshong, J. Org. Chem., 1996, 61, 6901.
23.M. E. Hayes, H. Shinokubo and R. L. Danheiser, Org. Lett., 2005, 7, 3917-3920.
24.T. T. Jayanth, M. Jeganmohan, M. –J. Cheng, S. –Y. Chu and C. –H. Cheng, J. Am. Chem. Soc. 2006, 128, 2232-2233.
25.Z. P. Demko and K. B. Sharpless, Org. Lett., 2001, 3, 4091-4094.
26.H. Singh, A. S. Chawla, V. K. Kapoor, D. Paul and R. K. Malhotra, Prog. Med. Chem. 1980, 17, 151-183.
27.D. Moderhack, J. Prakt. Chem. 1998, 340, 687-709.
28.Z. P. Demko and K. B. Sharpless, J. Org.chem., 2001, 66, 7945-7950.
29.Z. P. Demko and K. B. Sharpless, Org. Lett., 2002, 4, 2525-2527.
30.F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, J. Am. Chem. Soc., 2002, 124, 12210-12216.
31.F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, J. Am. Chem. Soc., 2003, 125, 9983-9987.
32.T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Forkin, Org. Lett., 2004, 6, 2853-2855.
33.F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman and K. B. Sharpless, J. Am. Chem. Soc., 2005, 127, 210-216.
34.D. S. Reddy, W. R. Judd and J. Aube, Org. Lett., 2003, 5, 3899-3902.
35.T. Kitamura, N. Fukatsu and Y. Fujiwara, J. Org. Chem. 1998, 63, 8579-8581
36.W. Lwowski and T. W. Mattingly Jr, J. Am. Chem. Soc., 1965, 87, 1949-1958.
37.Review papers: (a) S. Ozaki, Chem. Rev. 1972, 72, 457.
38.(a) D. A. Huang, M. J.Cross and J. Louie J. Am. Chem. Soc. 2004, 126, 11438. (b) L. V. R. Bonaga, H.-C. Zhang, D. A. Gauthier, I. Reddy and B. E. Maryanoff, Org. Lett. 2003, 5, 4537. (c) Y. Yamamoto, H. Takagishi and K. Itoh, Org. Lett. 2001, 3, 2117.
39.(a) T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin Org. Lett. 2004, 6, 2853-2855. (b) A. Krasinski, V. V. Fokin and K. B. Sharpless Org. Lett. 2004, 6, 1237-1240. (c) F. Himo, T. Lovell, R. Higraf, V. V. Rostovtsev, L. Noodleieman, K. B. Sharpless and V. V. Fokin J. Am. Chem. Soc. 2005, 127, 210-216. (d) F. Himo, Z. P. Demko, L. Noodleieman and K. Barry Sharpless J. Am. Chem. Soc. 2003, 125, 9983-9987.
40.(a) J. -C. Hsieh, D. K. Rayabarapu and Cheng, C.-H. Chem. Commun. 2004, 532. (b) J. –C. Hsieh and C. -H. Cheng, Chem. Commun. 2005, 2459-2460. (c) T. T. Jayanth, M. Jeganmohan and C. -H. Cheng, J. Org. Chem. 2004, 69, 8445-8450.
41.(a) H. Yoshida, H. Fukushima, J. Ohshita and A. Kunai Angew. Chem. Int. Ed. 2004, 43, 3935-3938. (b) H. Yoshida, E. Shirakawa, Y. Honda and T. Hiyama Angew. Chem. Int. Ed. 2004, 41, 3247-3249.
42.A. Vollmar and M. S. Dunn, J. Org. Chem. 1959, 25, 387-390.
43.E. W. Barrett and C. W. Porter, J. Org. Chem. 1998, 63, 8578.
44.C. J. Caveander and V. J. Shiner, J. Org. Chem. 1972, 37, 3567-3569.
45.J. R. Zaloom and C. David, J. Org. Chem. 1981, 46, 5173-5176.
46.Q. Liu and Y. Tor, Org. Lett. 2003, 5, 2571-2572.
47.R. Huisgen and H. Blaschke, Chemische Berichte, 1965, 98 (10), 2985. (b) S. Huneck, Chemische Berichte, 1965, 98 (10), 2305.
Chapter 3
1.Reviews: (a) S. Ozaki, Chem. Rev. 1972, 72, 457. (b) R. Arnold, J. Nelson and J. Verbanc, Chem. Rev. 1958, 58, 1157-1157. (c) H. Ulrich, Chem. Rev. 1965, 65, 369-376. (d) J. H. Saunders and R. J. Slocombe, Chem. Rev. 1948, 43, 203-218.
2.(a) R. G. Arnold, J. A. Nelson and J. J. Verbanc, Chem. Rev. 1957, 57, 47-76. (b) S. Ozaki, Chem. Rev. 1972, 72, 457-496.
3.(a) W. E. Brown, Biochemistry 1975, 14, 5079-5084. (b) W. E. Brown and F. Wold, Biochemistry 1973, 12, 828-834. (c) W. E. Brown, F. Wold, Biochemistry 1973, 12, 835-840.
4.(a) J. R. Babson, D. J. Reed and M. A. Sinkey, Biochemistry 1977, 16, 1584-1589. (b) J.-S. Twu and F. Wold, Biochemistry, 1973, 12, 381-386.
5.P. Braunstein and D. Nobel, Chem. Rev. 1989, 89, 1927-1945.
6.Y. Yamamoto, H. Takagishi and K. Itoh, Org. Lett. 2001, 3, 2117-2119.
7.Y. Yamamoto, H. Takagishi and K. Itoh, J. Am. Chem. Soc. 2002, 124, 28-29.
8.Y. Yamamoto, H. Takagishi and K. Itoh, J. Am. Chem. Soc. 2005, 127, 605-613.
9.E. Sternberg and K. P. Volhardt, J. Org. Chem. 1983, 48, 5413-5413.
10.P. Hong and H. Yamazaki, Tetrahedron Lett 1977, 1333.
11.L. V. R. Bonaga, H. –C. Zhang, D. A. Gauthier, I. Reddy and B. E. Maryanoff, Org. Lett. 2003, 5, 4537-4540.
12.H. A. Duong, M. J. Cross and J. Louie, J. Am. Chem. Soc. 2004, 126, 11438-11439.
13.H. Hoberg and B. W. Oster, Synthesis 1982, 324.
14.K. Tanaka, A. Wada and K. Noguchi, Org. Lett. 2005, 7, 4737-4739.
15.R. T. Yu and T. Rovis, J. Am. Chem. Soc. 2006, 128, 2782-2783.
16.W. E. Parham, L. D. Jones and Y. A. Sayed, J. Org. Chem. 1976, 41, 1184-1186.
17.T. Delacroix, L. Berillon, G. Gahiez and P. Knochel, J. Org. Chem. 2000, 65, 8108-8110.
18.D. C. D. Butler, G. A. Inman and H. Apler, J. Org. Chem. 2000, 65, 5887-5890.
19.H. –B. Zhou and H. Apler, J. Org. Chem. 2003, 68, 3439-3445.
20.T. Munegumi, I. Azumaya, T. Kato, H. Masu and S. Saito, Org. Lett. 2006, 8, 379-382.
21.S. Kamijo and Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 41, 3230-3232.
22.J. A. Fritz, J. S. Nakhla and J. P. Wolf, Org. Lett. 2006, 8, 2531-2534.
23.T. Takahasi, Y. Li, R.-Y. Tsai, and K. Nakajima, Organometallics 2001, 20, 595
24.Y. Nambu and T. Endo, J. Org. Chem, 1993, 58, 1932.
25.H. A. Duong, M. J. Cross, and J. Louie; Org. Lett. 2004, 6, 4679.
26.I. C. Kogon, J. Org. Chem, 1959, 24, 83.
27.I. C. Kogon, J. Am. Chem. Soc., 1956, 78, 4911.
28.Y. Ohshiro, K. Kinugasa, T. Minami and T. Agawa, J. Org.Chem. 1970, 35, 2136.
29.H. Hoberg, K. Sihmermann and A. Milchereit, Angew. Chem. Int. Ed., 1985, 24, 325.
30.H. Hoberg and K. Sihmermann, J. Organomet. Chem., 1984, 264, 379.
31.H. Hoberg and K. Sihmermann, J. Organomet. Chem. 1983, 253, 383.
32.E.Niwa, H. Aoki, H. Tanaka, K. Munakata and M. Namiki, Chem. Ber. 1966, 99, 3932.
33.H. Hoberg and K. Sihmermann, J. Organomet. Chem. 1982, 254, 35.
34.N. Solin, S. Narayan and K. J. Szabo, Org. Lett. 2001, 3, 909-912.
35.N. Iwasawa and K. Maeyama, J. Org. Chem, 1997, 62, 1918-1919.
36.(a) J. W. Verbicky Jr. and L. Williams, J.Org. Chem. 1981, 46, 175. (b) F. J. Williams and P. E. Donahue J.Org. Chem. 1977, 42, 3414. (c) M. Michman, S. Patai and Y. Wiesel, Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry 1977, 15, 1705. (d) V. Scartoni and T. Tognetti, Journal of Heterocyclic Chemistry 1984, 21, 1499. (e) J. A. Moore and J. H. Kim, Tetrahedron Letters 1991, 32, 3449.
37.(a) P. J. Christopher and Z. Parveen, Journal of the Chemical Society, Perkin Transactions 2 2001, 4, 512. (b) H. –Z. Li, J. –S. Zhang, Y. –M. Zhou and T. –S. Li, Synthetic Communications 2002, 32, 927. (c) B. M. Barchin, A. M. Cuadro and A. –B. Julio Synlett 2002, 2, 343. (d) Z. Xiao, K. Schaefer, S. Firestine and P. –K. Li, Journal of Combinatorial Chemistry 2002, 4, 149. (e) P. S. N. Chalasani., R Varala and S. R. Adapa, Heterocyclic Communications 2002, 8, 281. (f) M. –Y. Zhou, Y. –Q. Li and X. –M. Xu, Synthetic Communications 2003, 33, 3777.
38.(a) M. Sato, S. Ebine and S. Akabori, Synthesis 1981, 6, 472. (b) T. Yamamoto, Synthetic Communications 1979, 9, 219.
39.(a) K. J. Chang, D. K. Rayabarapu and C. –H. Cheng, Org. Lett. 2003, 5, 3963. (b) D. K. Rayabarapu, P. Shukla and C. –H. Cheng, Org. Lett. 2003, 5, 4903. (c) D. K. Rayabarapu and C. -H. Cheng, J. Am. Chem. Soc. 2002, 124, 5630. (d) D. K. Rayabarapu, C. –H. Yang and C. –H. Cheng, J. Org. Chem. 2003, 68, 6726. (e) K. –J. Chang, D. K. Rayabarapu and C. –H. Cheng, J. Org. Chem. 2004, 69, 4781.
40.T. Delacroix, L. Berillon, G. Cahiez and P. Knochel, J. Org. Chem. 2000, 65, 8108.
41.W. E. Parham, L. D. Jones and Y. A. Sayed, J. Org. Chem. 1976, 41, 1184.
Chapter4
1.(a) Thomson, R. H. Naturally Occurring Quinones IV. Recent Advances, 4th ed. Chapman & Hall: London, 1997. (b) G. Beringmann, R. Walter and R. Weririch, Angew. Chem. Int. Ed. 1990, 29, 977–991.
2.S. Saito and Y. Yamamoto, Chem. Rev. 2000, 100, 2901–2915.
3.K. H. Dötz, Angew. Chem., Int. Ed. 1975, 14, 644–645.
4.J. A. Casalnuovo and N. E. Schore, Organometallic Cycloaddition Reactions of Acetylenes. In Modern Acetylene Chemistry. Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1995; pp 139–172.
5.K. H. Dötz and P. Tomuschat, Chem. Soc. Rev. 1999, 28, 187–198.
6.W. D. Wulff, Transition Metal Carbene Complexes: Alkyne and Vinyl Ketene Chemistry. In Comprehensive Organometallic Chemistry II, Abel, A. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 12, pp 469–547.
7.K. H. Dötz, Angew. Chem., Int. Ed. 1984, 23, 587–608.
8.N. E. Schore, Chem. Rev. 1988, 88, 1081–1119.
9.C. A. Merlic and D. Xu, J. Am. Chem. Soc. 1991, 113, 7418–7420.
10.C. A. Merlic, C. C. Aldrich, J. A. Walker and A. Saghatelian, J. Am. Chem. Soc. 2000, 122, 3224–3225.
11.C. A. Merlic, C. C. Aldrich, J. A. Walker, A. Saghatelian and J. Mammen, J. Org. Chem. 2001, 66, 1297–1309.
12.C. A. Merlic, E. E. Burns, D. Xu and S. Y. Chen, J. Am. Chem. Soc. 1992, 114, 8722–8724.
13.C. A. Merlic and E. E. Burns, Tetrahedron. Lett. 1993, 34, 5401–5404.
14.M. W. Davies, C. N.Johnson and J. P. A. Harrity, Chem. Commun. 1999, 2107–2108.
15.M. W. Davies, C. N. Johnson and J. P. A. Harrity, J. Org. Chem. 2001, 66, 3525–3532.
16.K. H. Dötz and C. Stinner, Tetrahedron: Asymmetry 1997, 8, 1751–1765.
17.R. P. Hsung, W. D. Wulff, S. Chamberlin, Y. Liu, R. -Y. Liu, H. Wang, J. F. Quinn, S. L. B. Wang and A. L. Rheingold, Synthesis 2001, 200–220.
18.J. Pfeiffer, M. Nieger and K. H. Dötz, Chem. Eur. J. 1998, 4, 1843–1851.
19.D. Jiang and J. W. Herndon, Org. Lett. 2000, 2, 1267–1269.
20.T. J. Jackson, J. W. Herndon, Tetrahedron 2001, 57, 3859–3868.
21.X. Xie and M. C. Kozlowski, Org. Lett. 2001, 3, 2661–2663.
22.D. L. Boger, O. Hűter, K. Mbiya and M. Zhang, J. Am. Chem. Soc. 1995, 117, 11839–11849.
23.W. H. Moser, L. Sun and J. C. Huffman, Org. Lett. 2001, 3, 3389–3391.
24.J. H. Rigby and N. C. Warshakoon, J. Org. Chem. 1996, 61, 7644–7645.
25.B. B. Snider, Q. Zhang, J. Org. Chem. 1993, 58, 3185–3187.
26.J. F. Jamie and R. W. Rickards, J. Chem. Soc., Perkin Trans. 1996, 2603–2613.
27.A. -I. Tsai, Y. -L. Wu and C. -P. Chuang, Tetrahedron 2001, 57, 7829–7837.
28.E. Yoshikawa, K. V. Radhakrishnan and Y. Yamamoto, J. Am. Chem. Soc. 2000, 122, 7280–7286.
29.E. Yoshikawa and Y. Yamamoto, Angew. Chem., Int. Ed. 2000, 39, 173–175.
30.D. Pena, D. Pėrez, E. Guitián and L. Castedo, J. Org. Chem. 2000, 65, 944–6950.
31.D. Pena, D. Pėrez, E. Guitián and L. Castedo, J. Am. Chem. Soc. 1999, 121, 5827–5828.
32.R. C. Larock, M. J. Doty, Q. Tian and J. M. Zenner, J. Org. Chem. 1997, 62, 7536–7537.
33.R. C. Larock, Q. Tian, J. Org. Chem. 1998, 63, 2002–2009.
34.R. C. Larock, J. Organomet. Chem. 1999, 576, 111–124.
35.R. C. Larock, Pure Appl. Chem. 1999, 71, 1435–1442.
36.R. C. Larock, Q. Tian and A. A. Pletnev, J. Am. Chem. Soc. 1999, 121, 3238–3239.
37.R. C. Larock, M. J. Doty and X. Han, J. Org. Chem. 1999, 64, 8770–8779.
38.H. Mizufune, M. Nakamura and H. Mitsudera, Tetrahedron Lett. 2001, 42, 437–439.
39.Y. Terao, T. Satoh, M. Miura and M. Nomura, Tetrahedron 2000, 56, 1315–1320.
40.J. A. Nieman and M. D. Ennis, J. Org. Chem. 2001, 66, 2175–2177.
41.R. W. Saalfrank, M. Haubner, C. Deutscher, W. Bauer and T. Clark, J. Org. Chem. 1999, 64, 6166–6168.
42.N. Iwasawa, M. Shido, K. Maeyama and H. Kusama, J. Am. Chem. Soc. 2000, 122, 10226–10227.
43.K. Maeyama and N. Iwasawa, J. Am. Chem. Soc. 1998, 120, 1928–1929.
44.K. Maeyama and N. Iwasawa, J. Org. Chem. 1999, 64, 1344–1346.
45.J. W. Dankwardt, Tetrahedron Lett. 2001, 42, 5809–5812.
46.Y. Kita, K. Ito, K. I. Kawaguchi, N. Fukuda, Y. Takeda, H. Ueno, R. Okunaka, K. Higuchi, T. Tsujino, H. Fujioka and S. Akai, Chem. Eur. J. 2000, 6, 3897–3905.
47.J. B.-Urgoiti, L. Casarrubios, G. Dominguez and J. P. -Castells, Tetrahedron Lett. 2001, 42, 3315–3317.
48.K. -S. Huang and E. -C. Wang, Tetrahedron Lett. 2001, 42, 6155–6157.
49.P. Evans, R. Grigg, M. I. Ramzan, V. Sridharan and M. York, Tetrahedron Lett. 1999, 40, 3021–3024.
50.M. A. Bennett, C. J. Cobley, E. Wenger and A. C. Willis, Chem. Commun. 1998, 1307–1308.
51.M. A. Bennett and E. Wenger, Chem Ber./Recueil 1997, 130, 1029–1042.
52.T.Takahashi, R. Hira, Y. Nishihara and M. Kotora, J. Am. Chem. Soc. 1996, 118, 5154–5155.
53.T. Takahashi, Z. Xi, A. Yamazaki, Y. Liu, K. Nakajima and M. Kotora, J. Am. Chem. Soc. 1998, 120, 1672–1680.
54.Z. Duan, K. Nakajima and T. Takahashi, Chem. Commun. 2001, 1672–1673.
55.Y. Kabe, A. Sato, S. Kadoi, K. Chiba and W. Ando, Chem. Lett. 2000, 1082–1083.
56.S. Karady, J. S. Amato, R. A. Reamer and L. M. Weinstock, Tetrahedron Lett. 1996, 46, 8277–8280.
57.T. Muraki, H. Togo and M. Yokoyama, Synlett 1998, 286.
58.X. Zhou, Z. Li, H. Wang, M. Kitamura, K. –i. Kanno, K. Nakajima and T. Takahasi, J. Org. Chem. 2004, 69, 4559–4562.
59.M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, Org. Lett. 2002, 4, 3199–3202.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 苯駢咪唑與吲哚配位基銥錯合物之合成及其在有機電致發光元件上之應用
2. 鈀錯化合物催化1,2-雙烯之加成反應與應用及以鈷錯化合物為催化劑之偶合環化反應
3. 苯駢菲衍生物暨蒽菎衍生物在有機電致發光元件上之應用
4. 胺基苯蔥酮衍生物在有機電致發光二極體的應用暨白光元件的製作
5. 鈷金屬錯合物催化烯-烯基及烯-炔基之還原偶合反應及其在環酯、環醯系列化合物的合成應用
6. 含聯三伸苯及蒎之有機物合成暨在有機電激發光元件上之應用
7. 鎳金屬錯合物催化1,2-雙烯之加成反應與7-氧庚二烯及其衍生物之開環偶合反應及以鈷金屬錯合物為催化劑之環化加成反應
8. Nickel and Iridium Catalyzed Synthesis of Isoquinoline, Quinolines, Arylalkynes and Flavanones
9. 過度金屬催化有機合成反應:鎳與鈷金屬錯合物於偶合、環化及製備雜環反應上的應用
10. 高亮度磷光新穎銥金屬錯合物□合成探究以及有機發光二極體應用
11. 鈀金屬錯合物催化親核試劑與親電子試劑至不飽和碳-碳鍵上之加成反應
12. 鎳與鈷金屬錯合物催化偶合及環化反應之研究
13. 新型咪唑銥錯合物之合成及其在有機電致發光元件上的應用
14. 鎳與鈷金屬錯合物催化有機硼試劑與共軛烯類及炔類的加成與環化反應
15. 鈷金屬錯合物催化芳香基碘化物及烷基碘化物與共軛烯類之還原偶合反應
 
* *