帳號:guest(52.15.147.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林彥穎
作者(外文):Yen-Yin Lin
論文名稱(中文):新式電光週期極化反轉鈮酸鋰雷射元件
論文名稱(外文):Novel Electro-optic PPLN crystals for laser applications
指導教授(中文):黃衍介
指導教授(外文):Yen-Chieh Huang
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:917921
出版年(民國):95
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:週期極化鈮酸鋰
外文關鍵詞:periodically poled lithium niobate, PPLN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:186
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
由於週期極化鈮酸鋰(periodically poled lithium niobate, PPLN)晶體具有高非線性係數、可人工設計生產和穩定的化學性質的優點,所以近年來已成為非線性光學中的重要材料,特別是在各種波長可調的光參數產生過程中的應用最為廣泛。一般而言,極化週期在20至30微米左右的週期極化鈮酸鋰晶體製作方式已經相當成熟穩定,足以達到元件等級的應用,而鈮酸鋰本身也是一種優良的電光晶體、聲光晶體、以及光波導元件的基板。所以本篇論文的重點在於設計並展示一些新的週期性極化鈮酸鋰元件的光學效能,並研究其特性與應用方向。
首先提出的設計是一種利用週期性極化鈮酸鋰晶體作成的電光效應布拉格光調制器,此電光效應布拉格光調制器由一個長度為14.2厘米, 厚度為780毫米, 極化週期為20.13毫米的週期極化鈮酸鋰晶體所製成,本電光效應布拉格光調制器的半波電壓(half-wave voltage)僅約160 V。我們也利用此布拉格光調制器來架構一個新型的Q開關(Q-switched)脈衝式雷射,在19.35瓦808奈米的半導體雷射激發下,我們成功的產生脈衝重複率為一萬赫茲、脈衝寬度為7.8奈秒、脈衝能量為201微焦耳的雷射脈衝。
再來我們報告一個單縱模的雙波長雷射,利用19.35瓦808奈米的半導體雷射激發同時產生頻譜線寬少於450兆赫茲的1.064微米雷射光源和頻譜線寬少於400兆赫茲的1.342微米雷射光源,這兩個光源的波長還可以透過共振腔的微調來進行調整。另外我們也利用電光效應布拉格光調制器來進行此種雷射動態的研究。
最後我們發現在退火質子交換非週期性極化鈮酸鋰的波導中,電光調製波長的程度與光強度有關,實驗中發現當基頻光強度從0.6毫瓦增加到46毫瓦時,電光調製波長的能力會從0.07 nm/(kV/mm)增加到0.32 nm/(kV/mm)。再初步的實驗中發現,此種增益現象與倍頻光的強弱有較顯著的關係。
Periodically poled lithium niobate (PPLN) has become the nonlinear-optical material of choice in many infrared optical parametric processes due to its high nonlinearity, readily engineered tuning characteristics, and repeatable fabrication. The fabricating techniques are well developed and can produce device-quality PPLN crystals. Lithium niobate itself is a common material for photonics applications, such like electro-optics and acousto-optics modulation. The focus of the research was designing advanced electo-optic domain inverted devices based on PPLN, and investigating the performances and characteristics of these PPLN laser devices. A series of designs for advanced PPLN laser devices were realized and characterized.
We report an electro-optic Bragg modulator using a periodically poled lithium niobate (PPLN) crystal. We measured a half-wave voltage of 160 V when transmitting a 1064-nm laser through a 14.2-mm-long, 780-□m-thick, 20.13-□m-period PPLN crystal at the Bragg angle. We also demonstrated a Q-switched Nd:YVO4 laser using such a PPLN Bragg modulator as its Q-switch, producing 7.8-ns, 201-□J pulses at 10 kHz repetition rate when pumped by a 19.35-W diode laser at 808 nm.
We report a single-longitudinal-mode CW diode-pumped Nd:YVO4 laser emitting at both 1064 and 1342 nm with 10% optical efficiency at 20-W pump power. The measured spectral widths at 1064 and 1342 nm were less than 450 MHz and 400 MHz, respectively. The two emission wavelengths can be independently tuned over the lasing bandwidths of the dual-wavelength laser.
We report the observation of light-enhanced electro-optic spectral tuning in annealed proton-exchanged, asymmetric domain-duty-cycle PPLN channel waveguides for second harmonic generation. The spectral tuning rate was increased rapidly from 0.07 nm/(kV/mm) to a saturated value 0.32 nm/(kV/mm) in a 30%/70% domain-duty-cycle PPLN waveguide when the fundamental pump power near 1534 nm was increased from 0.6 mW to 46 mW. The second harmonic laser power at 767 nm was identified to be the source enhancing the spectral tuning.
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND
1.2 MOTIVATION
1.3 OPTICAL PROPERTIES OF LITHIUM NIOBATE
1.4 FABRICATION OF PERIODICALLY POLED LITHIUM NIOBATE CRYSTAL
1.5 OVERVIEW OF THIS DISSERTATION
CHAPTER 2 THE ELECTRO-OPTICS PERIODICALLY POLED LITHIUM NIOBATE BRAGG BEAM DEFLECTOR AND THE ELECTRO-OPTIC SPECTRAL TUNING PERIODICALLY POLED LITHIUM NIOBATE CRYSTAL
2.1 INTRODUCTION 17
2.2 THE ELECTRO-OPTICS PERIODICALLY POLED LITHIUM NIOBATE BRAGG BEAM DEFLECTOR
2.3 THE ELECTRO-OPTIC SPECTRAL TUNING PPLN CRYSTAL
2.4 SUMMARY
CHAPTER 3 A NOVEL ELECTRO-OPTIC PPLN Q-SWITCHED LASER
3.1 INTRODUCTION
3.2 CALCULATIONS OF CAVITY DIMENSIONS
3.3 EXPERIMENTAL RESULTS
3.4 SUMMARY
CHAPTER 4 NOVEL DUAL-WAVELENGTH LASERS
4.1 INTRODUCTION
4.2 A SINGLE-LONGITUDINAL-MODE, TUNABLE, DUAL-WAVELENGTH, CW ND:YVO4 LASER
4.3 THE EXPERIMENTAL RESULTS ABOUT A SINGLE-LONGITUDINAL-MODE, TUNABLE, DUAL-WAVELENGTH, CW ND:YVO4 LASER
4.4 AN ELECTRO-OPTIC PPLN Q-SWITCHED DUAL-WAVELENGTH LASER
4.5 SUMMARY
CHAPTER 5 ANOMALOUSLY ENHANCED ELECTRO-OPTIC SPECTRAL TUNING IN ASYMMETRIC-DUTY-CYCLE PPLN WAVEGUIDES
5.1 INTRODUCTION
5.2 THE EXPERIMENTAL SETUP FOR A ELECTRO-OPTIC SPECTRAL TUNING DEVICE
5.3 ANOMALOUSLY ENHANCED ELECTRO-OPTIC SPECTRAL TUNING IN ASYMMETRIC DUTY-CYCLE PPLN WAVEGUIDES
5.4 SUMMARY
CHAPTER 6 CONCLUSIONS
6.1 CONTRIBUTION OF THIS DISSERTATION
LIST OF PUBLICATIONS
A. INTERNATIONAL JOURNAL PAPERS
B. INTERNATIONAL CONFERENCE PAPERS
C. DOMESTIC CONFERENCE PAPERS
D. PATENTS
Chapter 1
M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolarences,”IEEE J. Quantum Electron. 28, 2631-2654 (1992).
J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D.C. Hanna, J. S. Wilkinson, “ Blue light generation in a periodically poled Ti: Lithium Niobate channel waveguide,” Opt. Commutation 135, 41-44 (1997).
G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, W. Sohler, “Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti: Lithium Niobate Waveguides using Pulsed and CW Pumping,” Appl. Phys. B 73, 501-504 (2001).
P. J. Chandler, L. Zhang, and P. D. Townsend, “Double wave-guide in LiNbO3 by ion-implantation,” Appl.Phys. Lett. 55, 1710-1712 (1989).
M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012 (1993).
M. H. Chou, I. Brener, M.M. Fejer, E. E. Chaban and S. B. Christman, “1.5-μm-Band Wavelength ConversionBased on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).
S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser,“ Opt. Lett. 18, 971-973 (1993).
L. E. Myers, G. D. Miller, R. C. Eckardt, M M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-□m-pumped optical parametric oscillator in bulk periodically poled LiNbO3.” Opt Lett. 20, 52-54 (1995).
W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, pp. 207-209 (1998).
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435-436 (1993).
J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, ”Interactions between Light Waves in a Nolinear Dielectric,” Physical Review, 127, 1918 (1962).
L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong “A High-efficiency Nonlinear Frequency Converter with a Built-in Amplitude Modulator,” J. Lightwave Technol. 20, 1165 (2002).
N. O’Brien, M. Missey, P. Powers, V. Dominic, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
J. J. Zayhowsky, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, pp. 169-171 (1997).
J. J. Zayhowski and C. Dill III, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716- 719(1995)
J. J. Zayhowski and C. Dill, III, "Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates," Opt. Lett. 17, 1201- 1204(1992)
Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, and P. Deng, "Passively Q -switched Nd:YVO4 laser with a Cr 4 :YAG crystal saturable absorber ," Appl. Opt. 36, 2468-2472 (1997)
G. J. Edwards, and M. Lawrence, “A temperature-depent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate”, Opt. Lett., 22, 1553-1556, (1997).
A. Yariv, and P. Yeh, Optical waves in crystals, (John Wiley and Sons, New York) (1984).
L. H. Peng, Y. C. Fang, and Y. C. Lin, “Polarization switching of lithium niobate with giant internal field” Appl. Phys. Lett. 74, pp 2070-2072 (1999)

Chapter 2
J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, ”Interactions between Light Waves in a Nolinear Dielectric,” Physical Review, 127, 1918 (1962).
L. E. Myers, G. D. Miller, R. C. Eckardt, M M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phasematched 1.064-□m-pumped optical parametric oscillator in bulk periodically poled LiNbO3.” Opt Lett. 20, 52-54 (1995).
An-Chung Chiang, Quasi-Phase-Matched Optical Parametric Amplifier in LiNbO3, dissertation of master degree, National Tsing Hua University, Taiwan, 1999.
R. C. Miller, “Optical harmonics generation in single crystal BaTiO3, “Phys. Rev., 134, pp. A1313-A1319, (1964).
C. F. Dewey, Jr. and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystal, “ Appl. Phys. Lett., 26, pp. 442-444, (1975).
B. F. Levine, C. G. Bethea, and R. A. Logan, “Phase-matched second harmonic generation in a liquid-filled waveguide, “Appl. Phys. Lett. 28, pp.267-270, (1976).
D. E. Thompson, J. D. Mcmullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘stacks of plates’ using high-power CO2 laser radiation,” Appl. Phys. Lett., 29, pp 113-115, 1976.
M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodically laminar structure of nonlinear optical crystal,” Opt. Commun. 18, pp.331-334, 1976.
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficiency blue second-harmonic generation,” Appl. Phys. Lett. 62, pp. 435-436 (1993).
S.-N. Zhu, Y.-Y. Zhu, Z.-J. Yang, H.-F. Wang, Z.-Y.Zhang, J.-F. Hong, C.-Z. Ge, and N.-B. Ming, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3”, Appl.Phys. Lett. 67, pp. 210 (1995).
S. Wang, V. Pasiskevicius, J. Hellström, and F. Laurell, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, pp. 978-980 (1999).
A. Yariv, and P. Yeh, Optical waves in crystals, (John Wiley and Sons, New York) (1984).

Chapter 3
L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995)
Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong “A High-efficiency Nonlinear Frequency Converter with a Built-in Amplitude Modulator,” J. Lightwave Technol. 20, 1165 (2002).
N. O’Brien, M. Missey, P. Powers, V. Dominic, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
David A. Scrymgeour, Alok Sharan, Venkatraman Gopalan, Kevin T. Gahagan, Joanna L. Casson, Robert Sander, Jeanne M. Robinson, Fikri Muhammad, Premanand Chandramani, and Fouad Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics ,” Appl. Phys. Lett. 81, 17, 3140 (2002).
Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
Y. H. Chen and Y. C. Huang, “Actively Q -switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q -switch ,” Opt. Lett. 28, 1460 (2003).
Y. H. Chen, Y. C. Huang, Y.Y. Lin, and Y,F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80, 889 (2005)
B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, (John Wiley and Sons,1991), pp. 800-831.
M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett., 85, (14), 2785 (2004).
D. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553 (1997).
A.Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984), pp. 230-234.

Chapter 4
C.G. Bethea, “Megawatt power at 1.318 µ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 µ” IEEE J. Quantum Electron. QE-9, 254 (1973).
Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser” Appl. Phys. B 70, 475-478 (2000).
H.Y. Shen, R.R. Zeng, Y.P. Zhou, G.F. Yu, C.H. Guang, Z.D. Zeng, W.J. Zhang, Q.J. Ye, “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2–4I11/2 and 4F3/2–4I13/2.” Appl. Phys. Lett. 56, 1937-1938 (1990).
Jirí Janousek, Peter Tidemand-Lichtenberg, Jesper L. Mortensen, Preben Buchhave, “Passively synchronized dual-wavelength Q-switched lasers,” presented at CLEO 2005, JTuC29, Baltimore, USA, 22-27 May, 2005.
Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, "Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate ," Opt. Lett. 27, 1809-1811 (2002).
K.C. Harvey and C.J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating” Opt. Lett. 16, No.12, 910-912 (1991).
C.S Yu and A.H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator” J. Opt. Soc. Am. B 16, No,12, 2233-2238 (1999).
ZunDu Luo, YiDong Huang, “Crystal-field analysis of the energy levels and spectroscopic characteristics of Nd3+ in YVO4” J. Phys.: Condens. Matter 6, 3737-3748 (1994).
A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd : YVO4 ” J. Appl. Phys. 48, No.12,. 4907-4911 (1977) http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-19-2411
H. Ogilvy, M. Withford, P. Dekker, and J. Piper, "Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm," Opt. Express 11, 2411-2415 (2003)
Y. F. Chen, S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing” Opt. Lett. 27, 397-399 (2002).
J. R. Morris, “Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses,” J. Opt. Soc. Am. A, 11, 832-845 (1994).
M. Lloyd-Hart, C. Baranec, N. M. Milton, T. Stalcup, M. Snyder, N. Putnam, and J. R. P. Angel, “First test of wavefront sensing with a constellation of laser guide beacons,” The Astrophys. J. 634, 679-686 (2005).

Chapter 5
J.A. Armstrong, N.Bloembergen, J. Ducuing, and P.S. Pershan, ”Interactions between Light Waves in a Nolinear Dielectric,” Physical Review, 127, 1918 (1962).
K. Parameswaran, J. Kurz, R. Roussev, and M. Fejer, "Observation of 99% pump depletion in single-pass second-harmonic g eneration in a periodically poled lithium niobate waveguide ," Opt. Lett. 27, 43 (2002).
L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong “A High-efficiency Nonlinear Frequency Converter with a Built-in Amplitude Modulator,” J. Lightwave Technol. 20, 1165 (2002).
N. O’Brien, M. Missey, P. Powers, V. Dominic, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, “Electro-optic tuning of the phase mismatch in quasi-phase-matched frequency doubling waveguides,” J. Appl. Phys. 79, 3793 (1996).
Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous Amplitude Modulation and Wavelength Conversion in an Asymmetric-duty-cycle Periodically Poled Lithium Niobate,” Opt. Commun., 223, 417 (2003).
Minoru Taya, Mathew C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled feeroelectrics,” Opt. Lett. 21, 857 (1996).
M. Bortz and M.M. Fejer, "Annealed proton-exchanged LiNbO3 waveguides," Opt. Lett. 16, 1844 (1991).
I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. Ziling, “Electro-optic offect in proton exchanged LiNbO3 and LiTaO3 waveguides,” J. Lightwave Technology 14, 403-409 (1996).
A.Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984), p. 232.
D. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553 (1997).
R.W. Boyd, Nonlinear optics, (Academic Press, INC., London,1992), p.27.
D. Eger, M. A. Arbore, and M. M. Fejer, “High-intensity illumination effects in LiNbO3 and KTiOPO4 waveguides,” J. Appl. Phys. 82 (3), 998 (1997).
(此全文限內部瀏覽)
Cover
Abstract(中英文)
Contents
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
List of publications
References
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *