帳號:guest(18.221.106.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳盈潔
作者(外文):Chen, Ying-Chieh
論文名稱(中文):超奈米微晶鑽石薄膜用於場發射元件及引導神經再生之研究
論文名稱(外文):Studies of Ultra-nanocrystalline Diamond Films on Field Emission Devices and Nerve Regeneration
指導教授(中文):戴念華
林諭男
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:923549
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:92
中文關鍵詞:超奈米微晶鑽石薄膜
外文關鍵詞:UNCD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:190
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本研究發展出一種嶄新的製程方式「低壓高溫偏壓輔助法」,在氫氣/甲烷電漿下,直接成長超奈米微晶鑽石薄膜。此製程所成長之薄膜具有的特性與現有氬氣電漿下所成長的薄膜性質十分相似,具有鑽石晶粒 (3-5 nm),但卻具有更平坦的表面 (~6 nm均方根)與更快的成長速率(~1 µm/小時)。進一步藉由X光同步輻射、原子力顯微鏡和穿透性電子顯微鏡探討其成核成長的機制。
為了促進鑽石的場發射特性,我們發展出三種方式來達成:第一,氮原子在高溫下被參雜到超奈米微晶鑽石薄膜,藉由提升基板的溫度。第二,將氮參雜的超奈米微晶鑽石薄膜沉積在奈米矽線上,奈米矽線的場發射特性藉由沉積氮參雜的超奈米微晶鑽石薄膜可以大大提升。第三,高溫成長的超奈米微晶鑽石薄膜利用離子佈植的方式將氮離子佈植在鑽石膜的表面。其相關的可能機制也將被探討。
鑽石本身已被證實具備生物相容性,因此我們進一步探討超奈米微晶鑽石在生物方面應用的可行性。主要研究著重於超奈米微晶鑽石跟神經幹細胞的相互作用,進而提升鑽石在生物材料方面的應用特性。利用普通的培養皿作為對照組來分別探討經過氫氣或氧氣電漿改質超奈米微晶鑽石對神經幹細胞的成長、延展與分化的影響。


The fundamental process underlies the synthesis of ultra-nanocrystalline diamond (UNCD) films, using a modified low-pressure, heat-assisted bias-enhanced nucleation and growth (BEN-BEG) technique, involving H2/CH4 chemistries. This growth process yields UNCD films similar to those produced by the Ar-rich/CH4 chemistries, with pure diamond nanograins (3-5 nm), but smoother surface (~6 nm root-mean-square) and higher growth rate (~1 µm/hr). X-Ray synchrotron analysis, atomic force microscopy, and transmission electron microscopy studies on the BEN-BEG UNCD films provided information critical to understand the nucleation and growth mechanism and growth conditions-nanostructure-properties relationships.
For the purpose of improving the electron field emission properties (EFE) of the UNCD films, we developed three different approaches: Firstly, nitrogen species were doped into UNCD films by microwave plasma chemical vapor deposition (MPCVD) process at high substrate temperature. Secondly, nitrogen-doped UNCD was conformal coated on silicon nanowires by a modified ultra-sonication process. The EFE properties of silicon nanowires were pronouncedly improved due to UNCD coating. Lastly, nitrogen ions with varied energies were implanted into UNCD films grown by microwave plasma chemical vapor deposition process at high substrate temperature 800°C. The EFE properties of the films were significantly improved. The feasible mechanisms will be discussed.
The interaction of UNCD with neural stem cells (NSCs) has been studied and its surface modification in order to improve its function as a biomaterial has been investigated. Hydrogen- and oxygen-terminated UNCD films were compared with standard grade polystyrene in terms of their impact on the growth, expansion, and differentiation of NSCs.
Contents

Abstract摘要
致謝
Contents

Chapter 1 Introduction to ultra-nanocrystalline diamond films
1-1 Introduction to diamond films
1-2 Nucleation and growth of UNCD films
1-3 Potential applications of UNCD films
1-4 Aims of this investigation

Chapter 2 Experiments
2-1 Nucleation and growth of UNCD films
2-2 Cell culture and related analyses

Chapter 3 Low-Pressure Bias-Enhanced Nucleation and Growth of Ultra- nanocrystalline Diamond Films
3-1 Synthesis and characterization of UNCD via low pressure bias-enhanced nucleation and growth
3-2 Substrate-induced effects on the nucleation and growth mechanisms of UNCD films: An approach of interfacial chemistry via chemical bonding mapping

Chapter 4 Nitrogen-Doped Ultra-Nanocrystalline Diamond Films
4-1 Substrate temperature effects on the electron field emission properties of nitrogen doped UNCD films
4-2 Enhancement of field emission properties in nitrogen-doped UNCD coated silicon nanowires
4-3 Improvement of field emission performance on nitrogen ions implanted UNCD through visualization of structure modifications

Chapter 5 Neural Stem Cells and Ultra-Nanocrystalline Diamond Films
5-1 The effects of ultra-nanocrystalline diamond films on the proliferation and differentiation of neural stem cells

Chapter 6 Conclusions and Future Work

Chapter 7 References

Chapter 8 Personal Curriculum Vitae
1. Xiao, X., Birrell, J., Gerbi, J.E., Auciello, O. & Carlisle, J.A. Low temperature growth of ultrananocrystalline diamond. Journal of Applied Physics 96, 2232-2239 (2004).
2. Wang, W.L., Liao, K.J., Fang, L., Esteve, J. & Polo, M.C. Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition. Diamond Relat Mater 10, 383-387 (2001).
3. Sekaric, L. et al. Nanomechanical resonant structures in nanocrystalline diamond. Applied Physics Letters 81, 4455-4457 (2002).
4. Yugo S, Kanai T, Kimura T, Muto T Generation of diamond nuclei by electric-field in plasma chemical vapor-deposition. Applied Physics Letters 58, 1036-1038 (1991).
5. Wolter SD, Stoner BR, Glass JT, Ellis PJ, Buhaenko DS, Jenkins CE, Southworth P Textured growth of diamond on siliconn via insitu carburization and bias-enhanced nucleation. Applied Physics Letters 62, 1215-1217 (1993).
6. Lee YC, Lin SJ, Lin CY, Yip MC, Fang WL, LinIN Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nanocrystalline diamond. Diamond Relat Mater 15, 2046-2050 (2006).
7. Lee YC, Lin SJ, Pradhan D, Lin IN Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique. Diam. Relat. Mater. 15, 353-356 (2006).
8. Stoner BR, Ma GHM, Wolter SD, Glass JT Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface-analysis and transmission electron-microscopy Physical Review B 45, 11067-11084 (1992).
9. Sharda, T., Umeno, M., Soga, T. & Jimbo, T. Strong adhesion in nanocrystalline diamond films on silicon substrates. Journal of Applied Physics 89, 4874-4878 (2001).
10. Auciello, O. et al. Materials science and fabrication processes for a new MEMS technoloey based on ultrananocrystalline diamond thin films. J Phys.: Condens Matter 16, R539-552 (2004).
11. Gruen, D.M. Nanocrystalline diamond film. Annu. Rev. Mater. Sci. 29, 211-259 (1999).
12. Lifshitz, Y., Meng, X.M., Lee, S.T., Akhveldiany, R. & Hoffman, A. Visualization of diamond nucleation and growth from energetic species. Phys. Rev. Lett. 93, 4 (2004).
13. Lee YC, Lin SJ, Chia CT, Cheng HF, Lin IN Effect of processing parameters on the nucleation behavior of nano-crystalline diamond film. Diamond Relat Mater 14, 296-301 (2005).
14. Lee ST, Peng HY, Zhou XT, Wang N, Lee CS, Bello I, Lifshitz Y A nucleation site and mechanism leading to epitaxial growth of diamond films. Science 287, 104-106 (2000).
15. Lambrecht WRL, Lee CH, Segall B, Angus JC, et al Diamond nucleartion by hydrogenation of the edges of graphitic precursors Nature 364, 607-610 (1993).
16. Belton, D.N., Harris, S.J., Schmieg, S.J., Weiner, A.M. & Perry, T.A. Insitu characterization of diamond nucleation and growth. Applied Physics Letters 54, 416-418 (1989).
17. Srinivasan, S., Hiller, J., Kabius, B. & Auciello, O. Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Applied Physics Letters 90, 3 (2007).
18. Lee YC, Lin SJ, Lin IN, Cheng HF Effect of boron doping on the electron-field-emission properties of nanodiamond films. Journal of Applied Physics 97, 5 (2005).
19. Garguilo, J.M. et al. Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays. Physical Review B 72, 6 (2005).
20. Xiao, X.C. et al. In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J Biomed Mate Res B Appl Biomater 77B, 273-281 (2006).
21. Poferl, D.J., Gardner, N.C. & Angus, J.C. Growth of boron-doped diamond seed crystals by vapor-deposition Journal of Applied Physics 44, 1428-1434 (1973).
22. Fujimori, N., Nakahata, H. & Imai, T. Properties of boron-doped epitaxial diamond films Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 29, 824-827 (1990).
23. Borst TH, Weis O Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications. Phys. Status Solidi A-Appl. Res. 154, 423-444 (1996).
24. Kohn, E. et al. Prospects of diamond devices. J. Phys. D-Appl. Phys. 34, R77-R85 (2001).
25. Prins JF Activation of boron-doped atoms in ion-implantated diamonds. Phys. Rev. B 38, 5576 (1988).
26. Okano K, Koizumi S, Silva SRP, Amaratunga GAJ Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond Nature 381, 140 (1996).
27. Shih CF, Liu KS, Lin IN Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films Diam. Relat. Mater. 9, 1591-1599 (2000).
28. Birrell J, Gerbi JE, Auciello O, Gibson JM, Grune DM, Carlisle JA Bonding structure in nitrogen doped ultrananocrystalline diamond. J. Appl. Phys. 93, 5606 (2003).
29. Bhattacharyya S, Auciello O, Birrell J, Carlisle JA, et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441 (2001).
30. Zapol P, Sternberg M, Curtiss LA, Frauenheim T, Gruen DM Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys. Rev. B 65, 045403 (2002).
31. Achatz P, Williams OA, Bruno P, Gruen DM, Garrido JA, Stutzmann M Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates. Phys. Rev. B 74, 155429 (2006).
32. Chen YC, Tai NH, Lin IN Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diam. Relat. Mater. 17, 457 (2008).
33. Arenal R, Bruno P, Miller DJ, Bleuel M, Lal J, Gruen DM Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films. Phys. Rev. B 75, 195431 (2007).
34. Mavrandonakis A, Froudakis GE, Andriotis A, Menon M Silicon carbide nanotube tips: Promising materials for atomic force microscopy and/or scanning tunneling microscopy Appl. Phys. Lett., 123126 (2006).
35. Lugstein A, Steinmair M, Hyun YJ, Bertagnolli E, Pongratz P Ga/Au alloy catalyst for single crystal silicon-nanowire epitaxy Appl. Phys. Lett. 90, 023109 (2007).
36. Natarajan S, Parker CB, Glass JT, Piascik JR, Gilchris KH, Bower CA, Stoner BR High voltage microelectromechanical systems platform for fully integrated, on-chip, vacuum electronic devices Appl. Phys. Lett. 92, 224101 (2008).
37. Brodie I, Spindt CA Vacuum microelectronics. Adv. Electron. Electron Phys. 83, 1 (1992).
38. Hajra M, Hunt CE, Ding M, Auciello O, Carlisle J, Gruen DM Effect of gases on the field emission properties of ultrananocrystalline diamond-coated silicon field emitter arrays. J. Appl. Phys. 94, 4079 (2003).
39. Shin IH, Lee TD Study on improved electron emission characteristics of micropatterned diamond-like carbon films J. Vac. Sci. Technol. B 17, 690 (1999).
40. Kang WP, Wisitsora-at A, Davidson JL, Tan OK, Zhu W, Li Q, Xu JF Electron emission from silicon tips coated with sol-gel (Ba0.67Sr0.33)TiO3 ferroelectric thin film J. Vac. Sci. Technol. B 19, 1073 (2001).
41. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, et al Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit Graefes Arch Clin Exp Ophthalmol 239, 961-967 (2001).
42. Lan S, Veiseh M, Zhang M Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron 20, 1697-1708 (2005).
43. Kristensen BW, Noraberg J, Thiebaud P, Koudelka-Hep M, Zimmer J Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures Brain Res 896, 1-17 (2001).
44. Chen YC, Zhong XY, Konicek AR, Grierson DS, Tai NH, Lin IN, Kabius B, Hiller JM, Sumant AV, Carpick RW, Auciello O Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth. Appl Phys Lett 92, 133113 (2008).
45. Yang WS, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter T, Russell JN, Smith M, Hamers RJ DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates Nat Mater 1, 253-257 (2002).
46. Lechleitner T, Klauser F, Seppi T The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces Biomaterials 29, 2433-2442 (2008).
47. Amaral, M. et al. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J Biomed Mater Res A 87A, 91-99 (2008).
48. William CC, Shafiul C, Shane AC, Jeffrey J W, Faheem MS, Kristin MH, Valery VK, Michael RH, Alfred W, Susan LBellis, Yogesh KV Biomaterials 29, 3461-3468 (2008).
49. Armstrong RJ, Svendsen CN Neural stem cells: From cell biology to cell replacement. Cell transplantaiton 9, 139-152 (2000).
50. Bithell A, Williams BP Neural stem cells and cell replacement therapy: making the right cells. Clin Sci 108, 13-22 (2005).
51. Fowler RH, Nordheim L Electron emission in intense electric fields. Proc. R. Soc. Lond. A 173 (1928).
52. Nordhlim, L.W. The effect of the image force on the emission and reflexion of electrons by metals. Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 121, 626-639 (1928).
53. Hsu YC, Lee DC, Chen SL, Liao WC, Lin JW, Chiu WT, Chiu IM Brain-Specific 1B Promoter of FGF1 Gene Facilitates the Isolation of Neural Stem/Progenitor Cells With Self-Renewal and Multipotent Capacities Dev Dyn 238, 302-314 (2009).
54. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD Single factors direct the differentiation of stem cells from the fetal and adult central nervous system Genes Dev 10, 3129-3140 (1996).
55. Bylund M, Andersson E, Novitch BG, Muhr J Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6, 1162-1168 (2003).
56. Chiu IM, Touhalisky K, Liu Y, Yates A, Frostholm A Tumorigenesis in transgenic mice in which the SV40 T antigen is driven by the brain-specific FGF1 promoter. Oncogene 19, 6229-6239 (2000).
57. Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, et al Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol 205, 547-562 (2007).
58. Graham V, Khudyakov J, Ellis P, Pevny L SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765 (2003).
59. Kan LX, Israsena N, Zhang Z, Hu M, Zhao LR, Jalali A, et al Sox1 acts through multiple independent pathways to promote neurogenesis Dev Biol 269, 580-594 (2004).
60. Pollard SM, Conti L, Sun Y, Goffredo D, Smith A Adherent neural stem (NS) cells from fetal and adult forebrain Cereb Cortex 16, i112-120 (2006).
61. Reynolds BA, Rietze RL Neural stem cells and neurospheres - re-evaluating the relationship Nat Methods 2, 333-336 (2005).
62. Laikhtman, A. et al. Sensitivity of near-edge x-ray absorption fine structure spectroscopy to ion beam damage in diamond films. Journal of Applied Physics 86, 4192-4198 (1999).
63. Birrell J, Carlisle JA, Auciello O, Gruen DM, Gibson JM Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Applied Physics Letters 81, 2235-2237 (2002).
64. Keblinski, P., Wolf, D., Cleri, F., Phillpot, S.R. & Gleiter, H. On the nature of grain boundaries in nanocrystalline diamond. MRS Bull. 23, 36-41 (1998).
65. Bhat DG, Johnson DG, Malshe AP, Naseem H, Brown WD, Schaper LW, Shen CH A preliminary investigation of the effect of posrdeposition polishing og diamond films on the machining behavior of diamond-coated cutting tools Diam. Relat. Mat. 4, 921-929 (1995).
66. Birrell, J. et al. Interpretation of the Raman spectra of ultrananocrystalline diamond. Diam. Relat. Mat. 14, 86-92 (2005).
67. Fabisiak K, Maarstumm M, Blank E Defects in chemically vapor-deposition diamond films studied by electron-spin-resonance and Raman-spectroscopy Diamond Relat Mater 722-727 (1993).
68. Tuinstra F, Koenig JL Raman spectrum of graphite J. Chem. Phys. 53, 1126 (1970).
69. Ferrari AC, Robertson J Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).
70. Keblinski P, Wolf D, Cleri F, Phillpot SR, Gleiter H On the nature of grain boundaries in nanocrystalline diamond. MRS Bull. 23, 36-41 (1998).
71. Garnett EC, Yang PD Silicon nanowire radial p-n junction solar cells J. Am. Chem. Soc. 130, 9224 (2008).
72. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD Enhanced thermoelectric performance of rough silicon nanowires Nature 451, 163 (2008).
73. Kuzmany H, Pfeiffer R, Salk N, Gunther B The mystery of the 1140 cm(-1) Raman line in nanocrystalline diamond films Carbon 42, 911 (2004).
74. Ferrari, Roberson AC Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).
75. Gupta S, Weiner BR, Morell G. Role of sp(2) C cluster size on the field emission properties of sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 80, 1471 (2002).
76. Chakrapani V, Angus JC, Anderson AB, Wolter SD, Stoner BR, Sumanasekera GU Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple Science 318, 1424 (2007).
77. Ristein J Surface transfer doping of semiconductors. Science 313, 1057 (2006).
78. Nebel C Science 318, 1391 (2007).
79. Flanagan LA, Rebaza LM, Derzic, Schwartz PH, Monuki ES Regulation of human neural precursor cells by laminin and integrins J Neurosci 83, 845-856 (2006).
80. Nurcombe V, Ford MD, Wildschut JA, Bartlett PF Developmental regulation of neural response to FGF1 and FGF2 by heparan sulfate proteglycan Science 260, 103-106 (1993).
81. Qian LC, Saltzman WM Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification Biomaterials 25, 1331-1337 (2004).
82. Williams DF On the mechanisms of biocompatibility Biomaterials 29, 2941-2953 (2008).
83. Chen RS, Chen MH, Young TH Induction of differentiation and mineralization in rat tooth germ cells on PVA through inhibition of ERK1/2. Biomaterials 30, 541-547 (2009).
84. Cheng K, Lai Y, Kisaalita WS Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials 29, 2802-2812 (2008).
85. Nakajima M, Ishimuro T, Kato K, et al Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation Biomaterials 28, 1048-1060 (2007).
86. Hamers RJ, Butler JE, Lasseter T, Nichols BM, Russell JNJ, Tse KY, et al Molecular and biomolecular monolayers on diamond as an interface to biology. Diamond Relat Mater, 661-668 (2005).
87. Hartl A, Schmich E, Garrido JA, Hernando J, Catharino SC, Walter S, et al Protein-modified nanocrystalline diamond thin films for biosensor applications Nat Mater 3, 736-742 (2004).
88. Kloss FR, Gassner R, Preiner J, Ebner A, Larsson K, Hachl O, et al The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation Biomaterials 29, 2433-2442 (2008).
89. Steinmueller-Nethl D, Kloss FR, Najam-Ul-Haq M, Rainer M, Larsson K, Linsmeier C Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption Biomaterials 27, 4547-4556 (2006).
90. Ruiz A, Buzanska L, Gilliland D, Rauscher H, Sirghi L, Sobanski T, Zychowicz M, Ceriotti L, Bretagnol F, Coecke S, Colpo P, Rossi F Micro-stamped surfaces for the patterned growth of neural stem cells Biomaterials 29, 4766-4774 (2008).
91. Specht CG, Williams OA , Jackmanb RB, Schoepfer R Ordered growth of neurons on diamond Biomaterials 25, 4073-4078 (2004).
92. Ariano P, Baldelli P, Carbone E, Gilardino A, Giudice ALo, Lovisolo D, Manfredotti C, Novara M, Sternschulte H, Vittone E Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diamond Relat Mater 14, 669-674 (2005).
93. Flaumenhaft R, Rifkin DB Curr Opin Cell Biol 3, 817-823 (1991).
94. Campos LS Beta 1 integrins and neural stem cells: making sense of the extracellular environment Bioessays 27, 698-707 (2005).
95. Matthew JD, Mathis OR, Duncan SS, Hossein A, Adam SGC Biomaterials 25, 5415-5422 (2004).
96. Arunkumar AI, Kumar TK, Kathir KM, Srisailam S, Wang HM, Leena PS, et al Oligomerization of acidic fibroblast growth factor is not a prerequisite for its cell proliferation activity. Protein Sci 11, 1050-1061 (2002).
97. Song SJ, Cool SM, Nurcombe V Regulated expression of syndecan-4 in rat calvaria osteoblasts induced by fibroblast growth factor-2 J Cell Biochem 100, 402-411 (2007).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *