帳號:guest(18.116.62.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉景洋
作者(外文):Liu,Ching-Yang
論文名稱(中文):電荷傳輸基團改質發光高分子電荷傳遞機制與聚噻吩本質電荷遷移率之研究
論文名稱(外文):Studies on Charge Transport Mechanism in Electroluminescent Polymers Containing Charge Transport Moieties and Intrinsic Charge Mobilty in Poly(3-hexylthiophene)
指導教授(中文):陳壽安
指導教授(外文):Chen,Show-An
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:923614
出版年(民國):97
畢業學年度:97
語文別:中文
論文頁數:213
中文關鍵詞:電荷傳遞電荷陷阱高分子發光二極體電荷遷移率電荷傳輸基團
外文關鍵詞:charge transportcharge trappolymer light-emitting diodecharge mobilitycharge transport moiety
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的為探討發光高分子側鏈以電荷傳輸基團改質後的電荷傳遷機制以及量測聚噻吩之本質電荷遷移率。首先以spiropolyfluorene(sPF)與polycarbazole(PCzB)經過不同的電荷傳輸基團改質後所得到的TPAsPF、G-sPF、PCzBOXD及PCzBCz四種系統作為研究對象,利用飛行時間法、熱激發電流、單一載子電流特性的量測,並結合電荷傳遞模型Gaussian Disorder Model (GDM)、Correlated Disorder Model (CDM)及Gill model分析,了解改質後材料的電荷傳遞機制以及電荷注入行為。最後,藉由量測poly(3-alkylthiophene) (P3HT) 在摻雜前後微波導電度的變化,計算出P3HT的本質電荷遷移率。
在TPAsPF與G-sPF系統中, TPA與Cz相對於主鏈分別為0.4與0.2 eV的電洞陷阱,由時間飛行法(Time-of-flight, TOF)可觀察到電洞的移動會受到TPA與Cz基團的限制,使得電洞遷移電流由未改質前的非分散型(non-dispersive)轉變成分散型(dispersive)。sPF具有很高的電洞遷移率10-3 cm2/Vs,經GDM與Gill model的分析可得到其傳遞系統的能量亂度(σsPF)與躍遷活化能(Ea, sPF)分別為84 meV與283 meV。在50 %側鏈基團比例時,無論是TPA50-sPF或是50 G-sPF其電洞遷移率都下降三個數量級至4×10-6 cm2/Vs,且其能量亂度與電洞躍遷活化能也都大幅地增加(σTPA50-sPF: 128 meV, σ50 G-sPF : 125 meV, Ea,TPA50-sPF : 622 meV, Ea, 50 G-sPF: 576 meV)。隨著側鏈基團比例增加,局部區域的側鏈基團會形成電洞通道,加速電洞的傳遞,因此,TPA100-sPF與100 G-sPF的電洞遷移率也分別上升至10-4 cm2/Vs與10-5 cm2/Vs,其能量亂度與電洞躍遷活化能也會跟著降低。由熱激發電流量測結果可證明TPA基團為電洞陷阱的來源,其陷阱釋放機制是由側鏈的熱運動帶動了側鏈基團上陷阱電荷的釋放,若在sPF與TPA之間,加入了Cz基團,使得sPF、Cz與TPA基團對於電洞形成階梯式的能階,此設計增加了電洞在三者之間躍遷的機率以及降低側鏈基團的陷阱效應,故在G-sPF系統所能觀察到的陷阱電流值僅為TPAsPF系統的5.5%。對於電洞注入方面,Spiropolyfluorene的側鏈導入TPA基團後,可提升電洞的注入量超過6000倍,若以TPA-Cz所組成的階梯式能階改質後,更可提升電洞的注入量達70000倍。
在PCzBOXD與PCzBCz系統中,OXD與Cz的氧化電位分別高於主鏈PCzB主鏈1.2與0.3 eV,因此OXD與Cz基團在此二系統中扮演電洞阻擋的角色。未改質的PCzB具有非分散型的電洞遷移電流,其電洞遷移率為10-5 cm2/Vs。導入OXD與Cz基團後,電洞遷移電流會轉變為分散型,表示改質後的材料不利於電洞的傳遞,其電洞遷移率隨著OXD與Cz基團的比例增加而逐漸降低。經由GDM與Gill model的分析,PCzBOXD與PCzBCz系統的能量亂度與電洞躍遷活化能並不會隨OXD與Cz基團的比例增加而有明顯地改變。CDM傳遞模型分析指出,電洞在此二系統中平均傳遞的距離會隨著側鏈基團的比例增加而變大,並且傳遞距離與主鏈的體積分率具有相似的相依性,綜合以上的資訊,我們認為電洞在此二系統中是經由主鏈傳遞,主要的傳遞過程由主鏈間的傳遞(inter-chain transport)所主導。對於電荷注入而言,Polycarbazole導入具有電洞阻擋與電子傳輸性質的OXD基團後,可抑制電洞的注入至原來的2.4%,並提升電子的注入量達200倍以上。然而在PCzBCz系統中,導入的Cz基團對於電子與電洞的注入影響就不明顯。
我們以化學摻雜取代time-resolved microwave conductivity (TRMC)中以雷射或電子束作為激發光源產生載子的方式,在P3HT溶液中形成可移動的偏極子(polaron)。此外,產生載子的數目可由摻雜濃度準確地計算出來。P3HT溶液配製成0.1 mg/ml,其摻雜濃度的範圍介於0 ~ 3%,隨著摻雜濃度的提高,P3HT溶液吸收微波的強度也會增加,代表導電度的變化會隨摻雜濃度的提高而增加。但計算所得到的電洞遷移率卻由0.1% 摻雜濃度的0.032 cm2/Vs降低至3% 摻雜濃度的0.0064 cm2/Vs,其下降的原因可解釋為:(1)提高摻雜濃度後,高分子鏈上的偏極子與counter ion的數目變多,增加了高分子鏈間的庫侖吸引力,且摻雜後的P3HT的高分子鏈的構形會趨向rod-like性質,使得P3HT鏈容易形成聚集,增加偏極子進行inter-chain transport的機率,而降低電洞遷移率。(2)在高摻雜濃度之下,平均一條高分子鏈上形成不只一個偏極子,偏極子之間的庫侖排斥力會使得載子移動的速度減低。在0.1 %的摻雜濃度下,高分子鏈沒有聚集以及庫侖排斥力影響,偏極子可自由地在P3HT上移動,此時P3HT的一維電洞遷移率(μ1D)達0.1 cm2/Vs可視為P3HT的本質電洞遷移率。
The aims of this study are (1) to understand charge transport mechanism in electroluminescent polymers grafted with charge transport moieties and (2) to evaluate the intrinsic charge mobility of poly(3-hexylthiophene) (P3HT). Four model systems based on spiropolyfluorene (sPF) and polycarbazole (PCzB) grafted with different charge transport moieties, including TPAsPF, G-sPF, PCzBOXD, and PCzBCz, are investigated. By uses of time-of-flight (TOF), thermally stimulated current (TSC), single carrier current characteristics measurement, together with analyses based on Gaussian Disorder Model (GDM), Correlated Disorder Model (CDM), and Gill model, we have proposed charge transport mechanisms and charge injection behaviors for these materials. We also demonstrate a facile method to evaluate the intrinsic charge mobility of poly(3-alkylthiophene) (P3HT) by measuring the change of microwave conductivity of P3HT in solution after doping.
In spiropolyfluorene grafted with TPA moieties (termed as TPAsPF) and gradient-ionization-potential TPA-Cz moieties (termed as G-sPF), both TPA and Cz act as hole traps relative to the main chain (sPF) with trap depths of 0.4 and 0.2 eV, respectively. From the results of TOF measurements, hole current transient will be changed from a non-dispersive type in sPF to a dispersive type in the modified sPF, indicating hole transport is severely limited by the incorporation of TPA and Cz moieties. sPF exhibits a high hole mobility of 10-3 cm2/Vs and its energetic disorder and hopping activation energy extracted from GDM and Gill model are determined as 84 and 283 meV, respectively. Incorporating with 50 % side chain moieties, both TPA50-sPF and 50 G-sPF reduce their hole mobilities to 4×10-6 cm2/Vs, three orders of magnitude less than that of sPF, leading to an increase in their energetic disorder and hopping activation (σTPA50-sPF: 128 meV, σ50 G-sPF : 125 meV, Ea,TPA50-sPF : 622 meV, Ea, 50 G-sPF: 576 meV). Further increase in the content of side chain moieties, TPA and Cz will form hole channels to facilitate hole transport. Therefore, hole mobilities of TPA100-sPF and 100 G-sPF are enhanced to 10-4 and 10-5 cm2/Vs, respectively. And their energetic disorder and hopping activation are also reduced. The results of TSC measurements evidence that trapping current observed in TSC spectra is originated from TPA moieties. The detrapping mechanism can be considered as that thermal motion of side chain triggers the release of charges trapped by side chain moieties. In G-sPF system, a gradient ionization potential formed by TPA, Cz, and sPF can increase the probability of hopping among these three species and alleviate the trapping effect of side chain moieties. Only 5.5% trapping current in TPAsPF can be observed in G-sPF system. The incorporation of TPA moieties can promote hole injection exceeding more than 6,000 times. And the incorporation of gradient-ionization-potential TPA-Cz moieties can further improve hole injection by more than 70, 000 times.
In polycarbazole grafted with OXD moieties (termed as PCzBOXD) and Cz moieties (termed as PCzBCz), both OXD and Cz serve as hole-blocking moieties relative to the main chain (PCzB) with barriers of 1.2 and 0.3 eV, respectively. Without modification, PCzB shows a non-dispersive hole transport and its hole mobility reaches 10-5 cm2/Vs. Dispersive current transients are observed in polycarbazole containing OXD and Cz moieties, indicating that the incorporation of OXD and Cz moieties brings a negative effect on hole transport. Their hole mobilities gradually decrease with increasing the content of side chain moieties. From the analyses of TOF results with GDM and Gill model, the energetic disorder and hopping activation energy vary little with the content of side chain moieties. The CDM analysis indicates that the average hopping distance will increase with increasing the content of OXD and Cz moieties. And these two systems hold a similar dependence on the relationship between hopping distance and volume ratio of main chain. Combining all information above, we conclude that inter-chain charge hopping dominates hole transport process. For charge injections, the presence of OXD moieties, which owns its hole-blocking and electron-transporting characteristics, can reduce hole injection ratio to only 2% and promote electron injection ratio by a factor of 200. However, the effect of Cz moieties on both electron and hole injection is not obvious in PCzBCz system.
For measuring intrinsic hole mobility in P3HT, instead of using a laser or an electron accelerator as excitation sources in time-resolved microwave conductivity (TRMC) measurement, we generate moving charge carriers (polarons) of P3HT in its solutions by adding chemical dopants. The number of generated charge carriers can be accurately estimated from the doping level. P3HT solutions were prepared as 0.1 mg/ml with the doping level from 0 to 3%. The amount of microwave power absorbed by P3HT solutions will increase with increasing the doping levels, representing that the conductivity change increases with the doping levels. However, the deduced hole mobility decreases from 0.032 to 0.0064 cm2/Vs as the doping level increases from 0.1 to 3 %. The reasons are given as follows. The first, as the doping level increases, more and more polarons and counter ions are generated in P3HT chains, leading to stronger attractive forces between P3HT chains. And the conformation of doped P3HT exhibit rod-like characteristics, which favors P3HT chains to segregate together. The formation of segregation increases the probability of inter-chain transport and decreases hole mobility. The second, on average, more than one polarons per chain are generated in the high doping level greater than 0.3%. Coulombic repulsive force between moving polarons within a chain also reduce the moving capability of polarons. At the lowest doping level of 0.1%, the absence of P3HT segregation and coulombic repulsive force allows polarons moving freely along isolated P3HT chains. In this case, the deduced one-dimensional hole mobility (μ1D) of P3HT reaches 0.1 cm2/Vs, which can be considered as the intrinsic hole mobility of P3HT.
摘要 I
Abstract IV
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 共軛導電高分子之電子狀態 3
1-3 金屬半導體理論 6
1-3-1 界面接合 6
1-3-2 電流傳遞過程 7
1-4 本文目的 9
第二章 文獻回顧 10
2-1 應用於發光二極體之高分子 10
2-1-1 PPV系高分子 10
2-1-2 Poly(para-phenylene)s PPP系高分子 11
2-1-3 Poly(fluorene) PF系高分子 11
2-1-4 電洞傳遞層 12
2-1-5 電子傳遞層 12
2-1-6 傳遞基團改質的發光層 13
2-2 高分子發光二極體元件物理 21
2-2-1 發光二極体之發光原理 21
2-2-2 載子注入理論 22
2-2-3 載子傳遞理論 23
2-3 元件物理量測方法: 載子遷移率與陷阱之量測 27
2-3-1 載子傳遞 27
2-3-2 載子陷阱的量測方法 34
2-4 載子傳遞與陷阱之回顧 36
2-4-1 載子傳遞 36
2-4-2 載子陷阱 42
2-4-3 載子的傳遞路徑探討 44
2-5 以微波導電度探討導電高分子的本質電荷遷移率 47
2-5-1 微波穿透物質的基本原理 47
2-5-2 微波導電度變化的量測方法及設備 50
2-5-3 微波導電度變化的計算 53
2-5-4 量測的環境與限制 58
2-5-5 微波量測導電高分子的電荷遷移率之回顧 59
2-6 文獻分析 64
第三章 實驗內容 66
3-1 高分子之合成 68
3-2 儀器設備 68
3-2-1 熱激發電流量測系統(Thermally stimulated current TSC) 68
3-2-2 飛行時間量測儀 (Time-of-Flight (TOF) measurement system) 69
3-2-3 電流-電壓特性量測 69
3-2-4 紫外線-可見光光譜儀 (Ultraviolet-visible spectroscopy、UV-Vis) 69
3-2-5 螢光光譜儀(Photoluminescence, spectroscopy, PL) 69
3-2-6 高頻量測設備 70
3-2-7 Waveguide Adapt 70
3-2-8 微波共振腔 (Microwave Resonance Cavity) 70
3-3 元件的製作 71
3-3-1 ITO玻璃基材之清潔 71
3-3-2 高分子薄膜之塗佈 71
3-3-3 金屬之蒸鍍 72
3-4 藥品使用 73
第四章 電洞傳輸基團改質spiropolyfluorene(sPF) 74
之電洞傳遞機制研究 74
4-1 前言 74
4-2 TPAsPF系統的電荷傳遞機制探討 76
4-2-1 TPAsPF系統在室溫下的電洞遷移率 77
4-2-2 TPAsPF系統的熱激發電流(Thermally Stimulated Current)量測 80
4-2-3 TPAsPF系統根據GDM、CDM與Gill Model的分析 84
4-2-4 TPAsPF系統的電洞傳遞機制推測 93
4-2-5 TPA基團對於載子注入的影響 95
4-3 G-sPF系統的電洞傳遞機制探討 96
4-3-1 G-sPF系統在室溫下的電洞遷移率 97
4-3-2 G-sPF系統根據GDM、CDM與Gill Model的分析 101
4-3-3 G-sPF的電洞傳遞機制推測 111
4-3-4 G-sPF系統的熱激發電流(Thermally Stimulated Current)量測 112
4-3-5 Gradient側鏈基團對載子注入的影響 117
4-4 本章結論 119
第五章 電荷傳輸基團改質polycarbazole (PCzB) 121
之電荷傳遞機制研究 121
5-1 前言 121
5-2 PCzBOXD系統的電荷傳遞機制探討 123
5-2-1 PCzBOXD系統在室溫下的電子電洞遷移率 124
5-2-2 PCzBOXD系統根據GDM、CDM與Gill Model的分析 130
5-2-3 PCzBOXD系統電洞遷移率與體積分率之關係 138
5-2-4 PCzBOXD電洞傳遞機制的推論 142
5-2-5 PCzBOXD系統中OXD基團對於電荷注入量的探討 143
5-3 PCzBCz系統的電荷傳遞機制探討 146
5-3-1 PCzBCz系統在室溫下的電洞與電子遷移率 147
5-3-2 PCzBCz系統根據GDM、CDM與Gill Model的分析 153
5-3-3 PCzBCz系統電洞遷移率與體積分率之關係 161
5-3-4 PCzBCz電洞傳遞機制推論 163
5-3-5 PCzBCz系統中Cz基團對於電荷注入量的探討 164
5-4 本章結論 166
第六章 以微波導電度變化估算聚噻吩之本質電荷遷移率 168
6-1 前言 168
6-2 儀器設備 170
6-2-1 量測溶液導電度變化的微波共振腔 170
6-2-2 量測薄膜導電度變化的微波共振腔 171
6-3 實驗結果 172
6-3-1 微波共振腔的sensitivity factor, A的量測 172
6-3-2 P3HT摻雜NOSbF6的光學性質 174
6-3-3 摻雜溶液對於微波吸收的探討 176
6-3-4 經摻雜後的P3HT溶液之微波導電度量測 180
6-3-5 量測限制 187
6-4 本章結論 191
第七章 總結與未來展望 193
參考文獻 197
本研究之原創性工作 209
自傳 210
著 作 目 錄 (Publication List) 211
[1] 1. J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science”, Academic Press, Orlando, 1984.
[2] A. S. Wood, Modern Plastics Int. 1991, Aug., 33.
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990 , 347, 539.
[4] J. Gmeiner, S. Karg, M. Meier, W. Rie□, P. Strohriegl, M. Schwoerer, Acta. Polym. 1993, 44, 201.
[5] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357,477.
[6] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature 1999, 397, 121.
[7] http://www.cdtltd.co.uk
[8] S. M. Sze, “Semiconductor Devices, Physics and Technology”, John Wiley & Son, New York, 1985.
[9] C. Kittel, “Introduction to Solid State Physics”, 6th edition, John Wiley & Son, Singapore, 1986.
[10] T. A. Skotheim, “Handbook of Conducting Polymers Vol. 1&2”, Marcel Dekker, New York, 1986.
[11] E. H. Rhoderick, R. H. Williams, “Metal-Semiconductor Contact”, 2nd edition, Clarendon press, Oxford, 1988.
[12] R. A. Wessling and R.G. Zimmermann, “United states patent office”, US Patent 1986 , 340, 1152.
[13] R. A. Wessling, J. Polymer. Sci., Polym. Symp. 1985, 72, 55.
[14] D. Braun and A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
[15] G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mater. 1992, 4, 36.
[16] M. Fukuda, K. Sawada, and K. Yoshino, Jpn. J. Appl. Phys. 1989, 28, L1433.
[17] Y. Ohmori, K. Yoshino, and M. Uchida, Jan. J. Appl. Phys. 1991, 30, L1941.
[18] W. L. Yu, J. Pei, W. Huang, and A. J. Heeger, “Spiro-Functionalized Polyfluorene Derivativesas Blue Light-Emitting Materials”, Adv. Mater., 12 (2000) 828.
[19] Y. Yang, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 1245.
[20] 羅元宏,”水溶性自身酸摻雜聚苯胺作為電洞傳遞層之高分子發光二極體的特性及其破壞機構的探討”,國立清華大學化工系碩士論文,民國88年。
[21] 李中揚,”ITO電極表面處理對高分子發光二極體效能及壽命的影響”,國立清華大學化工系碩士論文,民國89年。
[22] A. R. Brown, D. D. C. Bradley, R. H. Friend, Chem. Phys. Lett. 1992, 200, 46
[23] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, A. Kraft, Appl. Phys. Lett. 1992, 61, 2793.
[24] N. C. Greenham, S. C. Moratti, D. D. C. Bradlley, R. H. Friend and A. B. Holms, Nature, 1993, 365, 628.
[25] Q. Pei, Y. Yang, Adv. Mater.1995, 6, 559.
[26] Q. Pei, Y. Yang, Chem. Mater. 1995, 7, 1568.
[27] F. Cacialli, X. C. Li, R. H. Friend, S. C. Moratti, A. B. Holmes, Synth. Met. 1995, 75, 161.
[28] S. A. Chen, Y. Z. Lee, “Poly(p-phenylenevinylene)s Modified with 2,5-Diphenylene-1,3,4-Oxadiazole Moieties as EL Materials”, presented in the International Conference on Organic Electroluminescent Materials (Sep. 14-17, 1996, Rochester, New York, USA).
[29] A. W. Grice, A. Tajbaksh, P. L. Burn, D. D. C. Bradley, Adv. Mater. 1997, 9, 1174.
[30] S. J. Chun, K. Y. Kwon, S. W. Lee, J. I. Jin, C. H. Lee, Y. Park, Adv. Mater. 1998, 10, 112.
[31] Z. Bao, Z. Peng, M. E. Galvin, and E. A. Chandross, Chem. Mater. 1998, 10, 1201.
[32] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules 1999, 32, 1482.
[33] Z. Peng and J. Zhang, Chem. Mater. 1999, 11, 1138.
[34] M. S. Liu, X. Jiang, P. Herguth, and A. K. Y. Jen, Chem. Mater., 13 (2001) 3820.
[35] Y. Z. Lee, X. W. Chen, S. A. Chen, P. K. Wei, W. S. Fann, , J. Am. Chem. Soc. 2001, 123, 2296.
[36] T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater., 13 (2001) 565.
[37] C. Xia and R. C. Advincula, Chem. Mater., 13 (2001) 1682.
[38] C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, and K. Mullen, Adv. Mater., 14 (2002) 809.
[39] L. S. Yu and S. A. Chen, Adv. Mater. 2004, 16, 744.
[40] Xiwen Chen, J. L. Liao, Y. M. Liang, M. O. Ahmed, H. E. Tseng, and S. A. Chen, J. Am. Chem. Soc. 2003, 125, 636.
[41] F.-I. Wu, D. S. Reddy, and C.-F. Shu, Chem. Mater. 2003, 15, 269.
[42] C.-F. Shu, R. Dodda, F.-I. Wu, M. S. Liu, and A. K.-Y. Jen, Macromolecules 2003, 36, 6698.
[43] S.-H. Jin, M.-Y. Kim, J. Y. Kim, K. Lee, and Y.-S. Gai, J. Am. Chem. Soc. 2004, 126, 2474.
[44] F. I. Wu, P. I. Shih, C. F. Shu, Y. L. Tung and Y. Chi, Macromolecules, 38 (2005) 9028.
[45] C.-W. Huang, K.-Y. Peng, C.-Y. Liu, T.-H. Jen, N.-J. Yang, S.-A. Chen, Adv. Mater. , 2008, 20, 3709.
[46] P. M. Borsenberger and D. S. Weiss, “Organic Photoreceptor for Imaging Systems”, Dekker, New York, 1993.
[47] H. H. Poole and Dublin, Philos. Mag. London, Edinb. 1916, 33, 112.
[48] P. M. Borsenberger, and H. Bässler, J. Chem. Phys. 1991, 95, 5327.
[49] R. Richert, L. Pautmeier, and H. Bassler, Phys. Rev. Lett. 1989, 63, 547.
[50] W. D. Gill, J. Appl. Phys. 1972, 43, 5033.
[51] H. Bässler, Phys. Stat. sol. (b) 1993, 175, 15.
[52] S. V. Novikov, D. H. Dunlap, V.M. Kenkre, P. E. Parris, and A.V. Vannikov, Phy. Rev. Lett. 1998, 81, 4472.
[53] D. C. Hoesterey, G. M. Letson, J. Phys. Chem. Solids 24 (1963) 1609.
[54] U. Wolf, H. Bassler, P. M. Borsenberger, and W. T. Gruenbaum, Chem. Phys., 1997, 222, 259.
[55] S. Heun and P. M. Borsenberger, J. Imaging Sci. Technol. 43, 206 (1999).
[56] J. Veres and C. Juhasz, Philos. Mag. B 75, 377 (1997).
[57] I. I. Fishchuk, A. K. Kadashchuk, H. Bassler, D. S. Weiss, Phys. Rev. B 66, 205208 (2002).
[58] I. I. Fishchuk, A. K. Kadashchuk, A. Vakhnin, Y. Korrosko, H. Bassler, B. Souharce, and U. Scherf, Phys. Rev. B 73, 115210 (2006).
[59] A. Hirao, T. Tsukamoto, and H. Nishizawa, Phys. Rev. B 1999, 59, 12991.
[60] H. E. Tseng, T. H. Jen, K. Y. Peng, and S. A. Chen, Appl. Phys. Lett. 2004, 84, 1456.
[61] A.J. Campbell, D.D.C. Bradley, and H. Antoniadis, Appl. Phys. Lett. 2001, 79, 2133.
[62] G. Juska, K. Genevicius, R. Osterbacka, K. Arlauskas, T. Kreouzis, D. D. C. Bradley, and H. Stubb, Phys. Rev. B 2003, 67, 081201.
[63] K. Genevicius, R. Osterbacka, G. Juska, K. Arlauskas, and H. Stubb, Synth. Met. 2003, 137, 1407.
[64] R. Osterbacka, K.Genevicius, A. Pivrikas, G. Juska, K. Arlauskas, T. Kreouzis, D.D.C. Bradley, H. Stubb, Synth. Met. 2003, 139, 811.
[65] B. J. Chen, W. Y. Lai. Z. Gao, C. S. Lee, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 1999, 75, 4010.
[66] H. Tokuhisa, M. Era, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 1995, 66, 3433.
[67] L. B. Lin, J. M. O’Reilly, E. H. Magin, D. S. Weiss, S. A. Jenekhe, J. Appl. Phys. 2000, 88, 3501.
[68] Y. Kanemitsu and J. Einami, Appl. Phys. Lett. 1990, 57, 673.
[69] A. J. Campbell, D. D. C. Bradley, and H. Antoniadis, Synth. Met. 2001, 122, 161.
[70] D. Poplavskyy, and J. Nelson, J. Appl. Phys. 2003, 93, 341.
[71] H. C. F. Martens, J. N. Huiberts, P. W. M. Bolm, Appl. Phys. Lett. 2000, 77, 1852.
[72] P. W. M. Bolm, M. C. J. M. Vissenberg, Mater. Sci. Eng. 2000, 27, 53.
[73] P. Braunlich, “Thermally stimulated relaxation in solid”, Spinger-Verlag, Berlin, Heidelberg, New York, 1979.
[74] J. Steiger, R. Schmechel, and H. Von Seggern, Synth. Met., 2002, 129, 1.
[75] K. Mahesh, P. S. Weng, and C. Furetta, “Thermoluminescence in solid and its application”,
[76] S. W. S. Mckeever, “Thermoluminescence of solids”, Cambridge University Press, New York , 1985.
[77] M. Meier, S. Karg, and W. Riess, J. Appl. Phys. 1997, 82, 1961.
[78] P. W. M. Bolm, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett. 1996, 68, 3308.
[79] H. C. F. Martens, P. W. M. Blom, H. F. M. Schoo, Phys. Rev. B 2000, 61, 7489.
[80] P. W. M. Blom, M. J. M de Jong, and M. G. van Munster, Phys. Rev. B 1997, 55, R656.
[81] G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, Phys. Rev. B 1998, 58, R13411.
[82] A. R. Inigo, C. H. Tan, W. S. Fann, Y. S. Huang, G. Y. Perng, and S. A. Chen, Adv. Mater. 2001, 13, 504.
[83] C. H. Tan, A. R. Inigo, W. S. Fann, P. K. Wei, G. Y. Perng, and S. A. Chen, Org. Electronics 2002, 3, 81.
[84] L. S. Yu, H. E. Tseng, H. H. Lu, and S. A. Chen, App. Phys. Lett. 2002, 81, 2014.
[85] A. R. Inigo, H. C. Chiu, W. S. Fann, Y. S. Huang, U. S. Jeng, C. H. Hsu, K. Y. Peng, and S. A. Chen, Syn. Met. 2003, 139, 581
[86] A. R. Inigo, H. C. Chiu, W. S. Fann, Y. S. Huang, U. S. Jeng, T. L. Lin, C. H. Hsu, K. Y. Peng, and S. A. Chen, Phys. Rev. B 2004, 69, 075201.
[87] A. R. Inigo, C. C. Chang, W. S. Fann, J. D. White, Y. S. Huang, U. S. Jeng, H. S. Sheu, K. Y. Peng, and S. A. Chen, Adv. Mater. 2005, 17, 1835.
[88] Q. Shi, Y. Hou, J. Lu, H. Jin, Y. Li, Y. Li, X. Sun, and J. Liu, Chem. Phys. Lett. 2006, 425, 353.
[89] M. Redecker, and D. D. C. Bradley, Appl. Phys. Lett. 1998, 73, 565.
[90] Redecker, D. D. C. Bradley, M. Inbasekaran and E. P. Woo, Appl. Phys. Lett. 1998, 74, 1400.
[91] A. J. Campbell, and D. D. C. Bradley, J. Appl. Phys. 2001, 89, 3343.
[92] T. Kreouzis, D. D. C. Bradley, and A. J. Campbell, Proceedings of SPIE 2004, 5214, 141.
[93] M. Stolka, J. F. Janus, D. M. Pai, J. Phys. Chem. 1984, 88, 4707.
[94] M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, Adv. Mater. 1999, 11, 241.
[95] J. L. Liao, X. W. Chen, C. Y. Liu, C. C. Hsiao, and S. A. Chen, C. H. Su, and A. C. Su, J. Phys. Chem. 2007, 111, 10379.
[96] X. W. Chen, H. E. Tseng, J. L. Liao, and S. A. Chen, J. Phys. Chem. B 2005, 109, 17496.
[97] F. Laquai, F. Wegner, C. Im, H. Bassler, and S. Heun, J. Appl. Phys. 2006, 99, 023712.
[98] F. Laquai, F. Wegner, C. Im, H. Bassler, and S. Heun, J. Appl. Phys. 2006, 99, 033710.
[99] H. H. Fong, A. Papadimitratos, and G. G. Malliaras, Appl. Phys. Lett. 89, 172116, (2006).
[100] D. M. Pai, J. Chem. Phys. 1970, 52, 2285.
[101] I. Chen, J. Appl. Phys. 1976, 47, 2899.
[102] M. Onoda, D. H. Park and K. Yoshino, J. Phys.: Condens. Matt. 1989, 1, 113.
[103] M. Meier, S. Karg, K. Zuleeg, W. Brutting, and M. Schwoerer, J. Appl. Phys. 1998, 84, 87.
[104] P. Stallinga, H. L. Gomes, H. Rost, A. B. Holmes, M. G. Harrison, R. H. Friend, F. Biscarini, C, Taliani, G. W. Jones, and D. M. Taylor, Physica B 1999, 273-274, 293.
[105] A. A. Alagiriswamy, K. S. Narayan, Synth. Met. 2001, 116, 297.
[106] E. J. W. List, C. H. Kim, J. Shinar, A. Pogantsch, G. Leising and W.Graupner, Appl. Phys. Lett. 2000, 76, 2083.
[107] N. V. Malm, J. Steiger, R. Schmechel, and H. V. Seggern, J. Appl. Phys. 2001, 89, 5559.
[108] H. E. Tseng, K. Y. Peng, and S. A. Chen, Appl. Phys. Lett. 2003, 82, 4086.
[109] A. Kadachchuk, R. Schmechel, H. V. Seggern, U. Scherf, and A. Vakhnin, J. Appl. Phys. 2005, 98, 024101.
[110] H. E. Tseng, C. Y. Liu, and S. A. Chen, Appl. Phys. Lett. 2006, 88, 042112.
[111] H. E. Tseng, C. Y. Liu, and S. A. Chen, Appl. Phys. Lett. 2006, 89, 233510.
[112] H. H. Lu, C. Y. Liu, C. H. Chang, and S. A. Chen, Adv. Mater. 2007, 19, 2574.
[113] G. Pfister, S. Grammatica, and J. Mort, Phys. Rev. Lett. 37, 1360 (1976).
[114] D. M. Pai, J. F. Yanus, and M. Stolka, J. Phys. Chem. 1984, 88, 4714.
[115] S. A. Chen and H. T. Lee, Macromolecule 1993, 26, 3254.
[116] H. T. Lee, K. R. Chuang, S. A. Chen, P. K. Wei, J. H. Hsu, and W. S. Fann, Macromolecurle 1995, 28, 7645.
[117] P. M. Borsenberger, E. H. Magin, and S. A. Visser, Jpn. J. Appl. Phys., 37(1998) 1945.
[118] H. H. Fong, K. C. Lun, S. K. So, Chem. Phys. Lett. 353 (2002) 407.
[119] F. Laquai and D. Hertel, Appl. Phys. Lett., 2007, 90, 142109.
[120] A. Fleissner, H. Schmid, C. Meizer, and H. von Seggern, Appl. Phys. Lett. 91, 242103 (2007).
[121] N. Kirly, “Thiophene Based Semiconductors: Synthesis and Characterizations”, Dissertation, Dresden University of Technology.
[122] P. P. Infelta, M. P. De Hass, and J. M. Warman, Radiat. Phys. Chem. 10, 353 (1977).
[123] J. M. Warman, G. H. Gelinck, J. J. Piet, J. W. A. Suykerbuyk, M. P. de Haas, B. M.W. Langeveld-Voss, R. A. J. Janssen, D.-H. Hwang, A. B. Holmes, M. Remmers, D. Neher, K. Müllen, and P. Bäuerle, SPIE 3145, 142 (1997).
[124] M. P. de Hass and J. M. Warman, Chem. Phys. Lett. 73, 35 (1982)
[125] G. Dicker, “Photogeneration and dynamics of charge carriers in the conjugated polymer poly(3-hexylthiophene)”, Dissertation, Delft University.
[126] B. R. Wegewijs, G. Dicker, J. Piris, A. A. Garcia, M. P. De Hass, and J. M. Warman, Chem. Phys. Lett. 332, 79 (2000).
[127] R. J. O. M. Hoofman, M. P. De Hass, L. D. A. Siebbeles, and J. M. Warman, Nature (London) 392, 54 (1998).
[128] F. C. Grozema, L. D. A. Siebbeles, J. M. Warman, S. Seki, S. Tagawa, and U. Scherf, Adv. Mater. 14, 228 (2002).
[129] P. Prins, L. P. Candeias, A. J. J. M. de Breemen, J. Sweelssen, P. T. Herwig, H. F. M. Schoo, and L. D. A. Siebbeles, Adv. Mater. 17, 718 (2005).
[130] J. M. Warman, G. H. Gelinck, and M. P. de Haas, J. Phys.: Condens. Matter 14 (2002) 9935
[131] G. Dicker, M. P. De Hass, L. D. A. Siebbeles, and J. M. Warman, Phys. Rev. B 70, 045203 (2004).
[132] M. P. de Haas, G. P. van der Laan, B. Wegewijs, D. M. De Leeuw, P. Bauerle, D. B. A. Rep, D. Fichou, Syn. Met. 101(1999), 524.
[133] P. Prins, F. C. Grozema, J. M. Schins, T. J. Savenije, S. Patil, U. Scherf, and L. D. A. Siebbeles, Phys. Rev. B 73, 045204 (2006).
[134] A. Saeki, S. Seki, and S. Tagawa, J. Appl. Phys. 100, 023703 (2006).
[135] A. Saeki, S. Seki, Y. Koizumi, T. Sunagawa, K. Ushida, and S. Tagawa, J. Phys. Chem. B 2005, 109, 10015.
[136] G. H. Gelinck and J. M. Warman, Chem. Phys. Lett. 1997, 277, 361.
[137] R. J. O. M. Hoofman, G. H. Gelinck, L. D. A. Siebbeles, M. P. De Haas, and J. M. Warman, Macromolecules, 2000, 33, 9289.
[138] F. C. Grozema, T. J. Savenije, M. J. W. Vermeulen, L. D. A. Siebbeles, J. M. Warman, A. Meisel, D. Neher, H.-G. Nothofer, and U. Scherf, Adv. Mater. 2001, 13, 1627.
[139] G. Dicker, M. P. de Haas, L. D. A. Siebbeles, and J. M. Warman, Phys. Rev. B, 70, 045203 (2004).
[140] P. Prins, F. C. Grozema, B. S. Nehls, T. Farrell, U. Scherf, and L. D. A. Siebbeles, Phys. Rev. B 74, 113203 (2006).
[141] 黃智偉“藉由調整載子傳送基團的空間與能量順序設計高效率有機電致發光材料“ 國立清華大學化工系博士論文,民國97年。
[142] 陳彥均“高三重態能量之聚咔唑衍生物的光物理及電致發光特性之研究“ 國立清華大學化工系博士論文,民國96年。
[143] R. U. A. Khan, D. Poplavskyy, T. Kreouzis, and D. D. C. Bradley, Phys. Rev. B 75, 035215 (2007).
[144] T. Kreouzis, D. Poplavskyy, S. M. Tuladhar, M. Campoy-Quiles, J. Nelson, A. J. Campbell, and D. D. C. Bradley, Phys. Rev. B 73, 235201 (2006).
[145] P. M. Borsenberger, E. H. Magin, J. A. Sinicropi and L.-B. Lin, Jpn. J. Appl. Phys., 1998, 37, 166.
[146] S. A. Moiz, M. M. Ahmed, K. H. S. Karimov, and M/ Mehmood, Thin solid films, 516 (2007) 72.
[147] V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 2003, 13, 43.
[148] S. Grigalevicius, V. Getautis, J. V. Grazulevicius, V. Gaidelis, V. Jankauskas, E. Montrimas, Mater. Chem. Phys., 72 (2001), 395.
[149] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Kohler, R. H. Friend, Nature 2001, 413, 828.
[150] S. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Phys. Rev. B 2003, 68, 75211.
[151] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forest, Phys. Rev. B 1999, 60, 14422.
[152] X. Yang, D. Neher, D. Hertel, T. K. Daubler, Adv. Mater. 2004, 16, 161.
[153] X. Yang and D. Neher, Appl. Phys. Lett. 2004, 84, 2476.
[154] S. A. Choulis, V. E. Choong, M. K. Mathai, and F. So, Appl. Phys. Lett. 2005, 87, 113503.
[155] X. H. Yang, D. C. Muller, D. Neher, and K. Meerholz, Adv. Mater. 2006, 18, 948.
[156] S. A. Choulis, M. K. Mathai, V. E. Choong, and F. So, Appl. Phys. Lett. 2006, 88, 203502.
[157] A. van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, Carsten Rothe, A. Monkman, I. Bach, P. Stossel, and K. Brunner, J. Am. Chem. Soc. 2004, 126, 7718.
[158] Y. C. Chen, G. S. Huang, C. C. Hsiao, S. A. Chen, J. Am. Chem. Soc. 2006, 128, 8549.
[159] T. Yasuda, Y. Yamaguchi, D.-C. Zou, T. Tsutsui, Jpn. J. Appl. Phys. Part 1, 41, 5626 (2002).
[160] S.-P. Huang, J.-L. Liao, H.-E. Tseng, T.-H. Jen, C.-Y. Liu, and S.-A. Chen, Syn. Met., 156, 2006, 949.
[161] M. Stolka, J. F. Yanus, and D. M. Pai, J. Phys. Chem. 88, 4707 (1984).
[162] P. M. Borsenberger, J. Appl. Phys. 68, 5188 (1990).
[163] D. L. Lide, “CRC Handbook of Chemistry and Physics” (CRC Press, Boca Raton, FL 1991).
[164] W. J. Feast and R. H. Friend, J. Mater. Sci. 25(1990), 3796.
[165] A. Saeki, S. Seki, T. Sunagawa, K. Ushida, and S. Tagawa, Philosophical Magazine, 86, 2006, 1261.
[166] M. J. Nowak, S. D. D. V. Rughooputh, S. Hotta, and A. J. Heeger, Macromolecule 20, 965 (1987)
[167] S. S.-S. Huang, G. R. Freeman, J. Chem. Phys. 1979, 72, 1989.
[168] J. P. Aime, F. Bargain, and M. Schott, Phys. Rev. Lett. 62, 55 (1989).
[169] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielen, K. Bechgaard, B. M. W. Langeveldvoss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, Nature 1999, 401, 685.
(此全文未開放授權)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *