帳號:guest(18.189.171.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃蘊慈
作者(外文):Huang, Yun-Tzu
論文名稱(中文):利用單分子螢光共振能量轉移技術量測雙元體質子傳送-焦磷酸水解酶酵素活性區之距離變化
論文名稱(外文):Distance Variations between Active Sites of H+-pyrophosphatase Determined by Single Molecule Fluorescence Resonance Energy Transfer
指導教授(中文):潘榮隆
指導教授(外文):Pan, Rong-Long
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:924216
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:73
中文關鍵詞:質子傳送-焦磷酸水解酶單分子螢光共振能量轉移技術全內反射式螢光顯尾勁金奈米粒子原子力顯微鏡
外文關鍵詞:H+-translocating inorganic pyrophosphataseSingle molecule fluorescence resonance energy transferTotal internal reflection fluorescence microscopeGold nanoparticleAtomic force microscope
相關次數:
  • 推薦推薦:0
  • 點閱點閱:702
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
質子傳送-焦磷酸水解酶(簡稱H+-PPase; EC 3.6.1.1)是維持生物體內pH恆定的重要酵素。這個獨特的質子傳送酶藉由水解生物次級代謝產物-焦磷酸產生能量以驅動質子傳送,來維持細胞膜內外的酸鹼平衡。已知此酵素的焦磷酸水解功能單位為單元體,而質子傳送功能單位為同雙元體,其每個單體的酵素活化中心均由位在第五環圈的焦磷酸結合區段與第一酸性區段,以及位在第十五環圈的第二酸性區段和數個基要胺基酸所構成。本實驗即利用單分子螢光共振能量轉移技術,量測這些重要區段及胺基酸之間的分子間距離,並觀察此酵素與受質類似物及離子結合時所發生的之距離變化。其中位在同雙元體上兩個羧酸端的距離為49.3 ± 4.0 Å,而兩個胺基端之間的距離為67.2 ± 5.7 Å。雖然兩個焦磷酸結合區段的距離相對遙遠(70.8 ± 4.8 Å),但是當質子傳送-焦磷酸水解酶與鉀離子及焦磷酸類似物結合後,兩個焦磷酸結合區段會變得更靠近彼此(56.6 ± 4.1 Å)。此外當酵素與受質類似物結合時亦會引起同雙元體上兩個第一酸性區段及兩個H622胺基酸的距離發生重要的改變,然而此現象在鉀離子與質子傳送-焦磷酸水解酶結合時並未發生。因此,本研究在同雙元體質子傳送-焦磷酸水解酶的基要區段、重要胺基酸以及酵素活性區段之間的距離量測上提供了重要的結構意義,並且提出一個酵素與受質結合機制的模式。
Homodimeric H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel enzyme supplies energy at expense of hydrolyzing metabolic byproduct, pyrophosphate (PPi), for H+ translocation across membrane. The functional unit of a monomer suffices for enzymatic reaction of H+-PPase, while that for the translocation is homodimer. Its active site on each subunit consists of PPi binding motif, Acidic I and II motifs, and several essential residues. In this investigation, structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H+-PPase are 49.3 ± 4.0 Å and 67.2 ± 5.7 Å, respectively. Furthermore, putative PPi binding motifs on individual subunits are found to be relatively far away from each other (70.8 ± 4.8 Å), while binding of potassium and substrate analogue led them to closer proximity (56.6 ± 4.1 Å). Moreover, substrate analogue but not potassium elicits significantly distance variations between two Acidic I motifs and two H622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues and putative active sites on homodimeric subunits of H+-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H+-PPase upon substrate binding.
Abbreviations………………………………………………………………………..9
Introduction…………...…………………………………….……...………..……….10
Experimental Procedures....…………………...…………………………...………..13
CtH+-PPase DNA construction and mutagenesis…………..………….…………13
Microsome isolation and protein purification.....………….………......................13
CtH+-PPase activity assays……...………………….……………………………15
Atomic force microscopy………….…………………..……….…………..…….16
Fluorescence spectroscopy…...…………..……………………...……………….17
Single molecule imaging assays…………………………………………………18
TEM image analysis………………………………………………………..…….19
Results and Discussions………..………………………………………..……..…….22
Construction and characterization of CtH+-PPase mutants………........................22
Determination of inter-subunit distance for both termini and two active sites......25
Ligand effects on FRET efficiency between two termini and two active sites......30
References…………………...………………………………………………………..35
Table and Figures……………...…..……………………………...……….................42
Table I. FRET efficiencies (E*) and calculated distances (R) between dye pairs
in the absence and presence of ligands…................................................42
Figure 1. Topological model of CtH+-PPase.……………….……………...….....43
Figure 2. Heterologous expression and purification of CtH+-PPase…………......44
Figure 3. Enzymatic activities of CtH+-PPase.…………………………………..45
Figure 4. Expression and PPi hydrolyzing activities of CtH+-PPase mutants.…...46
Figure 5. PPi supported H+ translocation activities of CtH+-PPase mutants..........47
Figure 6. Coupling efficiencies of CtH+-PPase mutants.……………………...…48
Figure 7. smFRET determination of homodimeric CtH+-PPase.……………...…49
Figure 8. Histograms of FRET efficiencies.…………………………………..…50
Figure 9. TEM analysis of GNP-labeled homodimeric CtH+-PPase………….…51
Figure 10. K+ effects on the FRET efficiencies………………………………….52
Figure 11. IDP effects on the FRET efficiencies………………………………...53
Figure 12. K+/IDP effects on the FRET efficiencies………………………..……54
Figure 13. Substrate-mediated conformational change in the catalytic sites of
homodimeric CtH+-PPase…………..………………………………..55
Appendix………………………………………………………………………….…..56
Figure S1. Construction of CtH+-PPase.……………………………………..…..57
Figure S2. Determination of the optimal isopropyl β-D-thiogalactoside concentration for the expression of CtH+-PPase in E. coli…...………58
Figure S3. Time-dependence of CtH+-PPase gene expression in E. coli C43(DE3) at 37℃ with β-D-thiogalactoside treatment……………………….....59
Figure S4. Scheme of the components of TIRFM used for smFRET determination
……………………………………………………………………………………60
Figure S5. Schematic drawing for the determination of fluorescence anisotropy
..………………………………………………………………………………….61
Figure S6. Anisotropy of Alexa 488 and 647 at modified sites in putative active sites, N and C termini of CtH+-PPase………………………………..62
Figure S7. Sequence alignment of H+-PPases and sites of probes labeling in CtH+-PPase…..……………………………………………………….64
Figure S8. Determination of the optimal pH for CtH+-PPase……..……………..65
Figure S9. Kinetic analysis of wild type CtH+-PPase……………………………66
Figure S10. Histogram of purified CtH+-PPase height determined using the
AFM image…………………………………………………………67
Figure S11. Histogram of purified CtH+-PPase width determined using the
AFM image.………………………………………………………….68
Figure S12. Absorption and fluorescence emission spectra of Alexa Fluor 647
and Alexa Fluor 488 labeling at CtH+-PPase in pH7.2 buffer……….69
Figure S13. TEM analysis of monomaleimido GNP-labeled homodimeric CtH+-PPase………..………………………………………………….70
Figure S14. Histogram of the distances between GNP pairs determined by TEM
…….…………………………………………………………………71
Figure S15. Calculated distances between GNP pairs determined using TEM
……………………...………………………………………………...72
Figure S16. The proposed model based on smFRET measurement……………..73
Baltcheffsky M, Schultz A, Baltscheffsky H (1999) H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett 452: 121-127
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254
Clerc S, Barenholz Y (1998) A quantitative model for using acridine orange as a transmembrane pH gradient probe. Anal Biochem 259: 104-111
Cooperman BS, Baykov AA, Lahti R (1992) Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci 17: 262-266
Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes: the orientation factor in intramolecular energy transfer. Biophys J 26: 161-194
Drozdowicz YM, Rea PA (2001) Vacuolar proton pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206-211
Edstrom RD, Meinke MH, Yang R, Yang X, Elings V, Evans DF (1990) Direct visualization of phosphorylase–phosphorylase kinase complexes by scanning tunneling and atomic force microscopy. Biophys J 58: 1437–1448
Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Der Physik 2: 55-75
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214
Ginsburg H (2002) Abundant proton pumping in Plasmodium falciparum, but why? Trends Parasitol 18: 483-486
Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol 111: 195-202
Granier S, Kim S, Shafer AM, Ratnala VRP, Fung JJ, Zare RN, Kobilka B (2007) Structure and conformational changes in the C-terminal domain of the β2-adrenoceptor. J Biol Chem 282: 13895-13905
Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Nat Acad Sci USA 93: 6264-6268
Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1608: 190-199
Hsu SH, Hsiao YY, Liu PF, Lin SM, Luo YY, Pan RL (2009) Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-yrophosphatase expressed in yeast. Bot Stud 50: 291-301
Ishii Y, Yoshida T, Funatsu T, Aizawa, K, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem Phys 247: 163-173
Kim EJ, Zhen RG, Rea PA (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270: 2630-2635
Kirsch RD, Joly E (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26: 1848-1850
Lee NK, Kaparnidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88: 2939-2953
Lidke KA, Rieger B, Lidke DS, Jovin TM (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Processing 14: 1237-1245
Lin HH, Pan YJ, Hsu SH, Van RC, Hsiao YY, Chen JH, Pan RL (2005) Deletion mutation analysis on C-terminal domain of plant vacuolar H+-pyrophosphatase. Arch Biochem Biophys 442: 206-213
Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL (2009) The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 276: 4381-4394
López-Marqués RL, Pérez-Castiñeira J, Buch-Pedersen MJ, Marco S, Rigaud JL, Palmgren MG, Serrano A (2005) Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritina: a ‘Hot-Solve’ method for isolation of recombinant thermophilic membrane proteins. Biochim Biophys Acta 1716: 69-76
Luo Y, Wu JL, Gergely J, Tao T (1997) Troponin T and Ca2+ dependence of the distance between Cys48 and Cys133 of troponin I in the ternary troponin complex and reconstituted thin filaments. Biochemistry 36: 11027-11035
Maeshima M (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur J Biochem 196: 11-17
Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465: 37-51
Maeshima M (2001) Tonoplast transporters: Organization and function. Annu Rev Plant Physiol Plant Mol Biol 52: 469-497
Mann TL, Krull UJ (2003) Polarization spectroscopy in protein analysis. Analyst 128: 313-317
Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279: 35106-35112
Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276: 7654-7660
Pohjanjoki P, Lahti R, Goldman A, Cooperman BS (1998) Evolutionary Conservation of Enzymatic Catalysis: Quantitative Comparison of the Effects of Mutation of Aligned Residues in Saccharomyces cerevisiae and Escherichia coli Inorganic Pyrophosphatases on Enzymatic Activity. Biochemistry 37: 1754-1761
Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17: 348-353
Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5: 507-516
Saliba KJ, Allen RJ, Zissis S, Bray PG, Ward SA, Kirk K (2003) Acidification of the malaria parasite's digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem 278: 5605-5612
Sarafian V, Potier M, Poole RJ (1992) Radiation inactivation analysis of vacuolar H+-ATPase and H+-pyrophosphatase from Beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport. Biochem J 283: 493-497
Sato MH, Kasahara M, Ishii N, Homareda H, Matsuih, Yoshida M (1994) Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem 269: 6725-6758
Schneider S, Folprecht G, Krohne G, Oberleithner H (1995) Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflügers Arch 430: 795-801
Tomishige M, Stuurman N, Vale RD (2006) Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13: 887-894
Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SY, Hung SS, Ma JT, Pan RL (1996) Subunit structure of vacuolar proton pyrophosphatase as determined by radiation inactivation. Biochem J 316: 143-147
Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7: 724-729
Wu SA, Lokanath NK, Kim DY, Park HJ, Hwang HY, Kim ST, Suh SW, Kim KK (2005) Structure of inorganic pyrophosphatase from Helicobacter pylori. Acta Cryst 61: 1459-1464
Yang SJ, Ko SJ, Tsai YR, Jiang SS, Kuo SY, Hung SH, Pan RL (1998) Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure. Biochem J 331: 395-402
Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL (2004) Thermoinactivation analysis of vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1656: 88-95
Zhen R, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269: 23342-23350
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *