帳號:guest(18.226.96.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏孝寬
作者(外文):Wei, H. K.
論文名稱(中文):射頻大氣電漿束之研究 
論文名稱(外文):Study of Radio Frequency Atmospheric Pressure Plasma Jets
指導教授(中文):寇崇善
指導教授(外文):Kou, Chwung-Shan
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學號:927302
出版年(民國):98
畢業學年度:97
語文別:中文
論文頁數:304
中文關鍵詞:大氣電漿液晶配向碳膜沉積
外文關鍵詞:atmospheric pressure plasmaliquid crystal alignmentcarbon film depostion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:798
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
本論文研究目的在於發展低溫、均勻且穩定的射頻大氣電漿束,以氦氣(He)為主要研究對象,藉由實驗來瞭解其放電特性並建立一簡單的電漿阻抗模型以評估電漿密度。此外,並將此射頻大氣電漿束應用於液晶配向技術及非晶碳膜沈積。
本研究成功地發展一低溫、均勻且穩定的射頻大氣電漿束(atmospheric pressure plasma jet,APPJ),利用理論模型推得電漿密度介於1011 - 1012 cm-3。由光譜量測結果推得He APPJ其電子激發溫度為0.16 eV;He APPJ中的活化粒子以He亞穩態(706.52 nm)、N2+游離態(391.44 nm)及O原子激發態(777.19 nm)等為主。操作在相同的RF功率及氣體流量下,Ar APPJ的電漿密度高於He APPJ。
本研究成功地發展一低溫、均勻且穩定的線型大氣電漿束(linear atmospheric pressure plasma source,LAPPJ),可產生50 mm長之線型大氣電漿束,其結構簡單且可容易擴大放電尺寸,搭配二維移動平台可達到全面積的處理。利用理論模型推得電漿密度可達1012 cm-3。由光譜量測結果推得He LAPPJ其電子激發溫度介於0.106 ~ 0.239 eV;He LAPPJ中主要的活化粒子包括了He亞穩態(706.52 nm)、N2激發態(337.13 nm)、N2+游離態(391.44 nm)及O原子激發態(777.19 nm)等。
本研究成功地利用Ar APPJ進行液晶配向,且獲得良好的配向效果,預傾角可達2.32°,此法提供了一新穎、便利的處理方式,可以免去接觸式配向所帶來的問題。經過Ar APPJ處理後,配向膜表面產生更多的C-O及C=O鍵結,即提供更多電偶極與液晶分子作用來達到液晶配向。
本研究成功利用He LPPJ混合乙炔(C2H2)以掃瞄的方式進行非晶碳膜薄膜沈積並成功長出表面平整、光學穿透率高的非晶碳膜。並進一步利用此非晶碳膜作為液晶配向膜,利用低氣壓電漿束進行配向處理,可達到良好的配向效果。
第 一 章 緒論 1
1.1 前言 1
1.2 大氣電漿源簡介 1
1.3 非晶碳膜簡介 7
1.4 液晶配向技術簡介 9
1.5 研究目的 12
參考文獻 13

第 二 章 文獻回顧 17
2.1 大氣壓電漿源氣體放電原理 17
2.1.1 氣體游離過程簡介 17
2.1.2 氣體崩潰機制 19
2.1.3 產生均勻放電的方法 31
2.2 大氣射頻電容式偶合電漿放電特徵 35
2.2.1 二種放電模式 35
2.2.2 放電電壓與電流關係圖 39
2.3 非晶質碳簡介 42
2.3.1 非晶碳膜的應用 42
2.3.2 非晶碳膜的分類 42
2.3.3 非晶碳膜之Raman光譜 45
2.4 液晶配向技術簡介 48
2.4.1 接觸式液晶配向技術 48
2.4.2 非接觸式液晶配向技術 50
參考文獻 53

第 三 章 實驗設備與分析方法 59
3.1 大氣電漿源設備 59
3.1.1 大氣電漿束主體 59
3.1.2 線型大氣電漿源主體 60
3.1.3 電漿源周邊設備 61
3.2 電漿源特性量測系統 62
3.2.1 電性量測 62
3.2.2 阻抗量測系統 63
3.2.3 光譜量測系統與分析 64
3.2.3.1 光譜量測系統 64
3.2.3.2 放射光譜強度分析 65
3.2.3.3 電子激發溫度的計算 67
3.3 材料分析設備與方法 68
3.3.1 掃瞄式電子顯微鏡 68
3.3.2 原子力顯微鏡 68
3.3.3 化學分析電子儀 69
3.3.4 Raman光譜 69
3.3.5 Fourier轉換紅外線光譜儀 70
3.3.6 UV-VIS光譜量測 70
3.3.7 密度量測 70
3.3.8 鉛筆硬度測試機 71
3.3.9 接觸角量測系統與表面分析 72
3.3.9.1 接觸角量測系統 72
3.3.9.2 表面能分析 73
3.4 液晶配向分析設備 75
3.4.1 偏光顯微鏡 75
3.4.2 預傾角量測系統 76
參考文獻 77

第 四 章 射頻大氣電漿束之特性分析 79
4.1 前言 79
4.2 實驗方法 79
4.3 電漿理論模型 80
4.4 結果與討論 84
4.4.1 大氣電漿束輝光放電影像 84
4.4.2 大氣電漿束放電特性 85
4.4.3 電漿密度與鞘層電容 87
4.4.4 電漿光譜分析 95
4.5 結論 108
參考文獻 109

第 五 章 利用大氣電漿束於含氫非晶碳膜進行液晶配向 111
5.1 前言 111
5.2 實驗方法 113
5.3 結果與討論 116
5.3.1 配向效果分析 116
5.3.2 穿透率的變化 118
5.3.3 表面形貌 118
5.3.4 處理過程的光譜 120
5.3.5 ESCA分析 120
5.3.6 水滴角量測 123
5.3.7 Raman光譜分析 123
5.3.8 液晶配向機制探討 125
5.4 結論 127
參考文獻 128

第 六 章 射頻線型大氣電漿源之特性分析 131
6.1 前言 131
6.2 實驗方法 132
6.3 電漿理論模型 134
6.4 結果與討論 137
6.4.1 線型大氣電漿源輝光放電影像 137
6.4.2 線型大氣電漿源放電特性 140
6.4.3 電漿密度 149
6.4.4 電漿光譜分析 154
6.5 結論 163
參考文獻 165

第 七 章 利用射頻大氣電漿源掃瞄式沈積非晶碳膜 167
7.1 前言 167
7.2 實驗方法 168
7.3 結果與討論 173
7.3.1 表面形貌與沈積速率 173
7.3.2 非晶碳膜密度 199
7.3.3 電漿光譜分析 203
7.3.4 ESCA分析 207
7.3.5 Raman分析 226
7.3.6 FTIR分析 241
7.3.7 UV-VIS Transmittance分析 250
7.3.8 表面能分析 258
7.3.9 硬度分析 276
7.3.10 與低氣壓電漿源沈積非晶碳膜的比較 277
7.3.11 液晶配向測試 283
7.4 結論 290
參考文獻 294

第 八 章 總結 299
[1-1] A. Schutze et al., IEEE Trans. Plasma Sci., 26, p.1685, 1998.
[1-2] H. Schmid, B. Kegel, W. Petasch, and G. Liebel, Proc. Joint 24th Int. Conf. Microelectronics (MIEL) and 32nd Symp.Devices Materials SD'96, Nova Gorcia, Slovenia, p.17, 1996.
[1-3] M.A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
[1-4] J. R. Roth, J. Rahel, X. Dai, and D. M. Sherman, J. Phys. D: Appl. Phys., 38, p.555, 2005.
[1-5] J. R. Roth, S. Nourgostar, and T. A. Bonds, IEEE Trans. Plasma Sci., 35, p.233, 2007.
[1-6] Marlon H. Guerra-Mutis, Carlos V Pelaez U, and Rafael Cabanzo H, Plasma Sources Sci. Technol., 12, p.165, 2003.
[1-7] L. J. Ward, W. C. E. Schofield, and J. P. S. Badyal, Langmuir, 19, p.2110, 2003.
[1-8] M. G. McCord, Y. J. Hwang, Y. Qiu, L. K. Canup, and M. A. Bourham, J. Appl. Polym. Sci., 88, p.2038, 2003.
[1-9] S. Guimond and M. R. Wertheimer, J. Appl. Polym. Sci., 94, p.1291, 2004.
[1-10] X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, and R. F. Hicks, Plasma Sources Sci. Technol., 14, p.412, 2005.
[1-11] H. W. Herrmann, I Henins, J. Park, and G. S. Selwyn, Phys. Plasma, 6, p.2284, 1999.
[1-12] T. Yamamoto, m. Okubo, N. Imail, and Y. Mori, Plasma Chem. Plasma Proc., 21, p.1, 2004.
[1-13] T. Terajima and H. Koinuma, Appl. Surf. Sci., 223, p.259, 2004.
[1-14] E. E. Kunhardt, IEEE Trans. Plasma Sci., 28, p.189, 2000.
[1-15] K. Hirai, T. Okada, T. Kaneko, R. Hatakeyama, and H. Yoshiki, J. Plasma Fusion Res., 81, p.417, 2005.
[1-16] U. Kogelschatz, IEEE Trans. Plasma Sci., 30, p.1400, 2002.
[1-17] L. Baars-Hibbe et al., Surf. Coat. Technol., 174-175, p.519, 2003.
[1-18] T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, J. Phys. D, 23, p.374, 1990.
[1-19] K. Inomata, H. Ohkubo, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 60, p.816, 1992.
[1-20] K. Inomata, H. K. Ha, K. A. Chaudhary, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 64, p.46, 1994.
[1-21] J. -H. Kim, G. Liu, and S. H. Kim, J. Mater. Chem., 16, p.977, 2006.
[1-22] J. Y. Jeong et al., J. Vac. Sci. Technol. A, 17, p.2581, 1999.
[1-23] J. Y. Jeong et al., Plasma Sources Sci. Technol., 7, p.282, 1998.
[1-24] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, Plasma Sources Sci. Technol., 7, p.286, 1998.
[1-25] A. Kuwabara, S. -I, Kuroda, and H. Kubota, Plasma Sci. Technol., 9, p.181, 2007.
[1-26] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, New York, 1991.
[1-27] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[1-29] M. Goldman and R. S. Sigmond, IEEE Trans. Elect. Insulation., EI-17, p.90, 1982.
[1-29] J. S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci., 19, p.1152, 1991.
[1-30] M. Goldman and N. Goldman, “Corona discharges” in Gaseous Electronics, vol. 1, M. N. Hirsh and H. J. Oskam, Eds. New York: Academic, p. 219–290, 1978.
[1-31] P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci., 25, p.1258, 1997.
[1-32] Min Hur and Sang Hee Hong, J. Phys. D: Appl. Phys., 35, p.1946, 2002.
[1-33] B. Emission and U. Kogelschatz, IEEE Trans. Plasma Sci., 19, p.309, 1991.
[1-34] J. R. Roth, Industrial Plasma Engineering, vol. 1, Philadelphia, PA:IOP, 1995.
[1-35] D. Korzec, E. G. finantu-Dinu, G. L. Dinu, J. Engemann, M. Stefecka, M. Kando, Surf. Coat. Technol., 503, p.174, 2003.
[1-36] H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., 9, p.441, 2000.
[1-37] A. Grill, Diamond Relat. Mater., 8, p.428, 1999.
[1-38] A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, p.14095, 2000.
[1-39] NATO Advanced Study Institute, Diamond and diamond-like films and coatings, Plenum Press, New York, 1991.
[1-40] J. Robertson, Mater. Sci. Eng. Rep., 37, p.129, 2002.
[1-41] S. R. P. Silva, Properties of amorphous carbon, INSPEC Institution of Electrical Engineers, London, 2003.
[1-42] V. M. Elinson, V. V. Sleptsov, A. N. Laymin, V. V. Potraysay. L. N. Kostuychenko, and A. D. Moussina, Diamond Relat. Mater., 8, p.2103, 1999.
[1-43] H. Wang, M. -R. Shen, Z. -Y. Ning, C. Ye, and H. -S. Zhu, J. Mater. Res., 12, p.3102, 1997.
[1-44] B. R. Metha and E. A. Ogryzlo, Diamond Relat. Mater., 3, p.10, 1994.
[1-45] M. G. Beghi, A. C. Ferrai, K.B.K. Teo, J. Robertson, C. E. Bottani, A. Libassi, and B.K. Tanner, Appl. Phys. Lett., 81, p.3804, 2002.
[1-46] P. Zhang, B. K. Tay, C. Q. Sun, and S. P. Lau, J. Vac. Sci. Technol. A, 20, p.1390, 2002.
[1-47] S. J. Bull, Diamond Relat. Mater., 4, p.827, 1995.
[1-48] G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, Appl. Surf. Sci., 219, p.228, 2003.
[1-49] A. M. Baranov, A. E. Varfolomeev, A. A. Nefedov, M. Anderle, L. Calliari, G. Speranza, and N. Landini, Diamond Relat. Mater., 9, p.649, 2000.
[1-50] J. Levoska and S. Leppavuori, Appl. Surf. Sci., 86, p.180, 1995.
[1-51] S. E. Rodil, R. Olivares, and H. Arzate, Bio-Med. Mater. Eng., 15, p.101, 2005.
[1-52] A. Grill, Thin Solid Films, 355~356, p.189, 1999.
[1-53] P. Chaudhari, J. A. Lacey, S. -C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys., 37, p. L55, 1998.
[1-54] P. Chaudhari et al., Nature, 411, p.56, 2001.
[1-55] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, Liq. Cryst., 31, p.859, 2004.
[1-56] K. Y. Wu et al., J. Appl. Phys., 98, p.083518, 2005.
[1-57] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, London and New York, 2005.
[1-58] D. W. Berreman, Phys. Rev. Lett., 28, p.1683, 1972.
[1-59] J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, p.33, 1983.
[1-60] W. M. Gibbons, P. J. Shannon, S. -T. Sun, and J. Swetlin, Nature, 351, p.49, 1991.
[1-61] S. -T. Sun, W. M. Gibbons, and P. J. Shannon, Liq. Cryst., 12, p.869, 1992.
[1-62] S. -T. Sun, W. M. Gibbons, and P. J. Shannon, Nature, 368, p.532, 1994.
[1-63] W. M. Gibbons, and S. -T. Sun, Appl. Phys. Lett., 65, p.2542, 1994.
[1-64] A. Dyadyusha, A. Khizhnyak, T. Marussi, Y. Reznokov, O. Yaroshchak, V. Reshetnyak, W. Park, S. Kwon, H. Shin, and D. Kang, Mol. Cryst. Liq., 263, p.399, 1995.
[1-65] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, p.2155, 1992.
[1-66] M. Schadt, H. Seiberle, A. Shuster, and S. M. Kelly, Jpn. J. Appl. Phys., 34, p.3240, 1995.
[1-67] P. Chaudhari, J. A. Lacey, S. -C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys., 37, p. L55, 1998.
[1-68] P. Chaudhari et al., Nature, 411, p.56, 2001.
[1-69] J. -Y. Hwang, Y. -M. Jo, D. -S. Seo, S. J. Rho, D. -K. Lee, and H. K. Baik, Jpn. J. Appl. Phys., 41, p.L654, 2002.
[1-70] H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik, Jpn. J. Appl. Phys., 44, p.4092, 2005.
[1-71] J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules, 31, p.1942, 1998.
[1-72] J. Stöhr and M. G. Samant, J. Electron Spectrosc. Rel. Phenom., 98-99, p.189, 1999.
[1-73] J. Stöhr et al., Science, 292, p2292, 2001.
[1-74] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, Liq. Cryst., 31, p.859, 2004.
[1-75] K. Y. Wu et al., J. Appl. Phys., 98, p.083518, 2005.
[1-76] K. Y. Wu, J. Appl. Phys., 101, p.023531, 2007.

[2.1] B. Chapman, Glow Discharge Process, John Wiley & Sons, Inc., New York, 1980.
[2.2] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, New York, 1991.
[2.3] J. R. Roth, Industrial Plasma Engineering, vol. 1, Institute of physics Publishing, Bristol, 1995.
[2.4] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[2.5] M.A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
[2.6] J. I. Levatter and S. -C. Lin, J. Appl. Phys., 51, p.210, 1980.
[2.7] H. Raether, Electron Avalanches and Breakdown in Gases, London, Butterworth, 1964.
[2.8] L. B. Loeb, Basic Processes of Gaseous Electronics, Berkeley, CA, University of California Press, 1960.
[2.9] J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, Wiley, New York, 1978.
[2.10] H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford U. P., London, 1969.
[2-11] H. D. Hagstrum, Phys. Rev., 104, p.672, 1956.
[2-12] A. J. Palmer, Appl. Phys. Lett., 25, p.138, 1974.
[2-13] B. Lacour and C. Vannier, J. Appl. Phys., 62, p.754, 1987.
[2-14] G. Herziger, R. Wollermann-Windgasse, and K. Banse, Appl. Phys., 24, p.267, 1981.
[2-15] H. Seguin and J. Tulip, Appl. Phys. Lett., 21, p.414, 1972.
[2-16] R. S. Taylor, Appl. Phys. B., 41, p.1, 1986.
[2-17] S. Bollanti, T. Letardi, and C. Zhang, IEEE Trans. Plasma Sci., 19, p.361, 1991.
[2-18] S. L. Kulakov, A. A. Kuchinskii, A. G. Maslennikov, Y. V. Rybin, V. A. Smirnov, V. P. Tomashevich, and I. V. Shestakov, Tech. Phys., 35, p.1387, 1990.
[2-19] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D: Appl. Phys., 26, p.889, 1993.
[2-20] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys., 21, p.838, 1988.
[2-21] T. Yokoyama, M. Kohoma, S. Kanazawa, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys., 23, p.374, 1990.
[2-22] T. Yokoyama, M. Kohoma, and S. Okazaki, J. Phys. D: Appl. Phys., 23, p.1125, 1990.
[2-23] S. Y. Moon, W. Choe, and B. K. Kang, Appl. Phys. Lett., 84, p.188, 2004.
[2-24] H. Barankova and L. Barodos, Appl. Phys. Lett., 76, p.285, 2000.
[2-25] N. Gherardi and F. Massines, IEEE Trans. Plasma Sci., 29, p.536, 2001.
[2-26] J. J. Shi and M. G. Kong, IEEE Trans. Plasma Sci., 33, p.276, 2005.
[2-27] J. L. Walsh, J. J. Shi, and M. G. Kong, Appl. Phys. Lett., 89, p.161505, 2006.
[2-28] C. H. Ho, TAC surface treatments by atmosphere pressure plasma source M.S. Thesis, NTHU, June, 2005.
[2-29] Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, Boca Raton, FL: CRC Press, 1995.
[2-30] S. M. Levitskii, Zh. Tekh. Fiz., 27, 970, 1001, 1957.
[2-31] V. A. Godyak and A. S. Khanner, IEEE Trans. Plasma Sci., 14, 112, 1986.
[2-32] P. Vidaud, S. M. A. Durrani and D. R. Hall, J. Phys. D: Appl. Phys., 21, 57, 1988.
[2-33] Y. P. Raizer and M. N. Shneider, Sov. J. Plasma Phys., 13, 267, 1987.
[2-34] Y. P. Raizer and M. N. Shneider, Sov. J. Plasma Phys., 17, 789, 1991.
[2-35] Y. P. Raizer and M. N. Shneider, Sov. J. Plasma Phys., 18, 762, 1992.
[2-36] N. A. Yatsenko, Zh. Tekh. Fiz., 50, 2480, 1980.
[2-37] N. A. Yatsenko, Zh. Tekh. Fiz., 51, 1195, 1981.
[2-38] N. A. Yatsenko, Zh. Tekh. Fiz., 58, 294, 1988.
[2-39] V. A. Godyak and R. B. Piejak, and B. M. Alexabdrovich, IEEE Trans. Plasma Sci., 19, 660, 1991.
[2-40] V. A. Lisovskii, V. D. Egorenkov, and O. V. Krasnikov, Zh. Tekh. Fiz., 15, 17, 1993.
[2-41] V. A. Lisovskii, Zh. Tekh. Fiz., 68, 52, 1998.
[2-42] X. Yang, M. Moravej, G. R. Nowling, J. P. Chang, and R. F. Hicks, IEEE Trans. Plasma Sci., 33, 294, 2005.
[2-43] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang and R. F. Hicks, Plasma Sources Sci. Technol., 14, 314, 2005.
[2-44] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, and R. F. Hicks, J. Appl. Phys., 89, 20, 2001.
[2-45] J. Shi and M. G. Kong, IEEE Trans. Plasma Sci., 33, 624, 2005.
[2-46] J. J. Shi and M. G. Kong, J. Appl. Phys., 97, 023306, 2005.
[2-47] S. Y. Moon, W. Choe, and B. K. Kang, Appl. Phys. Lett., 84, 188, 2004.
[2-48] J. Robertson, Adv. Phys., 35, p.317, 1986.
[2-49] NATO Advanced Study Institute, Diamond and diamond-like films and coatings, Plenum Press, New York, 1991.
[2-50] J. Robertson, Mater. Sci. Eng. Rep., 37, p.129, 2002.
[2-51] S. R. P. Silva, Properties of amorphous carbon, INSPEC Institution of Electrical Engineers, London, 2003.
[2-52] V. M. Elinson, V. V. Sleptsov, A. N. Laymin, V. V. Potraysay. L. N. Kostuychenko, and A. D. Moussina, Diamond Relat. Mater., 8, p.2103, 1999.
[2-53] H. Wang, M. -R. Shen, Z. -Y. Ning, C. Ye, and H. -S. Zhu, J. Mater. Res., 12, p.3102, 1997.
[2-54] B. R. Metha and E. A. Ogryzlo, Diamond Relat. Mater., 3, p.10, 1994.
[2-55] M. G. Beghi, A. C. Ferrai, K.B.K. Teo, J. Robertson, C. E. Bottani, A. Libassi, and B.K. Tanner, Appl. Phys. Lett., 81, p.3804, 2002.
[2-56] P. Zhang, B. K. Tay, C. Q. Sun, and S. P. Lau, J. Vac. Sci. Technol. A, 20, p.1390, 2002.
[2-57] S. J. Bull, Diamond Relat. Mater., 4, p.827, 1995.
[2-58] G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, Appl. Surf. Sci., 219, p.228, 2003.
[2-59] A. M. Baranov, A. E. Varfolomeev, A. A. Nefedov, M. Anderle, L. Calliari, G. Speranza, and N. Landini, Diamond Relat. Mater., 9, p.649, 2000.
[2-60] J. Levoska and S. Leppavuori, Appl. Surf. Sci., 86, p.180, 1995.
[2-61] S. E. Rodil, R. Olivares, and H. Arzate, Bio-Med. Mater. Eng., 15, p.101, 2005.
[2-62] A. Grill, Thin Solid Films, 355~356, p.189, 1999.
[2-63] P. Chaudhari, J. A. Lacey, S. -C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys., 37, p. L55, 1998.
[2-64] P. Chaudhari et al., Nature, 411, p.56, 2001.
[2-65] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, Liq. Cryst., 31, p.859, 2004.
[2-66] K. Y. Wu et al., J. Appl. Phys., 98, p.083518, 2005.
[2-67] A. Grill, Diamond Relat. Mater., 8, p.428, 1999.
[2-68] A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, p.14095, 2000.
[2-69] P. K. Chu and L. Li, Mater. Chem. Phys., 96, p.253, 2006.
[2-70] M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. Akamatsu, J. Appl. Phys., 64, p.6464, 1988.
[2-71] H. C. Tsai, D.B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton, and S. T. Mayer, J. Vac. Sci., Techno. A, 6, p.2307, 1998.
[2-72] D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev. B, 20, p.870, 1984.
[2-73] B. Kleinsorge, A. C. Ferrari, J. Robertson, and W. I. Miline, J. Appl. Phys., 88, p.1149, 2000.
[2-74] C. Mapelli, C. Casiglioni, C. Zerbi, and K. Mullen, Phys. Rev. B, 60, p.12710, 1999.
[2-75] R. O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B, 29, p.3482, 1984.
[2-76] R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, J. Vac. Sci. Technol. A, 6, p. 1783, 1988.
[2-77] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, London and New York, 2005.
[2-78] D. W. Berreman, Phys. Rev. Lett., 28, p.1683, 1972.
[2-79] J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, p.33, 1983.
[2-80] W. M. Gibbons, P. J. Shannon, S. -T. Sun, and J. Swetlin, Nature, 351, p.49, 1991.
[2-81] S. -T. Sun, W. M. Gibbons, and P. J. Shannon, Liq. Cryst., 12, p.869, 1992.
[2-82] S. -T. Sun, W. M. Gibbons, and P. J. Shannon, Nature, 368, p.532, 1994.
[2-83] W. M. Gibbons, and S. -T. Sun, Appl. Phys. Lett., 65, p.2542, 1994.
[2-84] A. Dyadyusha, A. Khizhnyak, T. Marussi, Y. Reznokov, O. Yaroshchak, V. Reshetnyak, W. Park, S. Kwon, H. Shin, and D. Kang, Mol. Cryst. Liq., 263, p.399, 1995.
[2-85] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, p.2155, 1992.
[2-86] M. Schadt, H. Seiberle, A. Shuster, and S. M. Kelly, Jpn. J. Appl. Phys., 34, p.3240, 1995.
[2-87] A. Lien, R. A. John, M. Agnelopoulos, K. W. Lee, H. Takano, K. Tajima, and A. Takenaka, Appl. Phys. Lett., 67, p.3108, 1995.
[2-88] J. -Y. Hwang, Y. -M. Jo, D. -S. Seo, S. J. Rho, D. -K. Lee, and H. K. Baik, Jpn. J. Appl. Phys., 41, p.L654, 2002.
[2-89] H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik, Jpn. J. Appl. Phys., 44, p.4092, 2005.
[2-90] J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Díaz, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules, 31, p.1942, 1998.
[2-91] J. Stöhr and M. G. Samant, J. Electron Spectrosc. Rel. Phenom., 98-99, p.189, 1999.
[2-92] J. Stöhr et al., Science, 292, p2292, 2001.
[2-93] J. P. Doyle et al., Phys. Rev. B, 206, p.467, 2003.
[2-94] K. Y. Wu, J. Appl. Phys., 101, p.023531, 2007.

[3.1] S. Zarrabian, C. Lee, and K. H. Guenther, Applied Optics, 32, p.5606, 1993.
[3.2] J. W. Coburn and M. Chen, J. Appl. Phys., 51, p.3134, 1980.
[3-3] R. E. Walkup, K. L. Daenger, and G. S. Selwyn, J. Chem. Phys., 84, p.2668, 1986.
[3-4] R. K. Marcus and J. A. C. Broikaert, Glow Discharge Plasmas in Analytical Spectroscopy, Wiley, 2003.
[3-5] M. Stefecka, D. Korzec, M. Siry, Y. Imahori, and M. Kando, Sci. Technol. Adv. Mater., 2, p.587, 2001.
[3-6] Y. Zhang, X. -H. Wen, and W. -H. Yang, Plasma Sources Sci. Technol., 16, p.441, 2007.
[3-7] N. U. Rehman, F. u. Khan, M. A. Naveed, and M. Zakaullan, Plasma Sources Sci. Technol., 17, p.025005, 2008.
[3-8] 汪建民, 材料分析, 中國材料科學學會, 1998.
[3-9] J. C. Vickeaman, Surface Analysis - The Principal Techniques, Wiley, 1997.
[3-10] D. A. Skoog et al., Principles of Instrumental Analysis 5th edition, Thomson-Brooks, 2004.
[3-11] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts 3rd Edition, Wiley, 2001.
[3-12] K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Wiley, New York, 1997.
[3-13] J. Tauc, R. Grigorovici and A. Vancu, Physica Status Solidi, 15, p.627, 1966.
[3-14] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[3-15] J. Robert, J. Adhesion Sci. Technol., 6, p.1269, 1992.
[3-16] P.K. Sharma and K. H. Rao, Adv. Colloid Interface Sci., 98, p.341-463, 2002.
[3-17] T. Young, Philos. Trans. R. Soc. Lomd., 95, p.65, 1805.
[3-18] R.J. Good, Treatise on Adhesion and Adhesives, Marcel Dekker, New York, 1967.
[3-19] S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York, 1982.
[3-20] D. K. Owens, J. Appl. Polymer Sci., 13, p.1741, 1969.
[3-21] J. S. Chen et al., J. Appl. Phys., 89, p.7814.
[3-22] M. Warenghem, Mol. Cryst. Liq. Cryst., 89, p.15, 1982.
[3-23] P. Hubert and Y. Galerne, Appl. Phys. Lett., 71, p. 1050, 1997.
[3-24] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices, Taylor & Francis, London and New York, 2005.
[3-25] 松本正一,角田市良, 液晶之基礎與應用, 國立編譯館, 1996.
[3-26] T.J. Scheffer and J. Nehring, J. Appl. Phys., 48, p.1783, 1977.
[3-27] K. Shirota et al., Jpn. J. Appl. Phys., 34, p.4905, 1995.

[4-1] A. Schutze et al., IEEE Trans. Plasma Sci., 26, p.1685, 1998.
[4-2] H. Schmid, B. Kegel, W. Petasch, and G. Liebel, Proc. Joint 24th Int. Conf. Microelectronics (MIEL) and 32nd Symp.Devices Materials SD’96, Nova Gorcia, Slovenia, p.17, 1996.
[4-3] M.A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
[4-4] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, New York, 1991.
[4-5] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[4-6] Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, Boca Raton, FL: CRC Press, 1995.
[4-7] Z. Chen. IEEE Trans. Plasma Sci., 30, p.1992, 2002.
[4-8] P. Vidaud, S. M. A. Durrani and D. R. Hall, J. Phys. D: Appl. Phys., 21, 57, 1988.
[4-9] V. A. Lisovskii, Zh. Tekh. Fiz., 68, 52, 1998.
[4-10] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, and R. F. Hicks, J. Appl. Phys., 89, 20, 2001.
[4-11] J. Shi and M. G. Kong, IEEE Trans. Plasma Sci., 33, 624, 2005.
[4-12] S. Y. Moon, W. Choe, and B. K. Kang, Appl. Phys. Lett., 84, 188, 2004.
[4-13] R. E. Walkup, K. L. Saenger, and G. S. Selwyn, J. Chem. Phys., 84, p.2668, 1986.
[4-14] J. Pons, E. Moreau, and G. Touchard, J. Phys. D: Appl. Phys., 38, p.3635, 2005.
[4-15] J. Y. Jeong et al., J. Vac. Sci. Technol. A., 17, p.2581, 1999.

[5-1] J. Stohr and M. G. Samant, J. Electron Spectrosc. Relat. Phenom., 98-99, p.189, 1999.
[5-2] D. W. Berreman, Phys. Rev. Lett., 28, p.1683, 1972.
[5-3] D. W. Berreman, Mol. Cryst. Liq. Cryst., 23, p.187, 1973.
[5-4] L. T. Creagh and A. R. Kmetz, Mol. Cryst. Liq.Cryst., 24, p.59, 1973.
[5-5] S. Naemura, Mol. Cryst. Liq. Cryst., 68, p.183, 1981.
[5-6] S. Kobayashi and Y. Limura, SPIE, 2175, p.122, 1994.
[5-7] H. Matsuda, D. -S. Seo, N.Yoshida, K. Fujibayashi, and S. Kobayashi, Mol. Cryst. Liq. Cryst., 264, p.23, 1995.
[5-8] S. -C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, and J. L. Speidell, IBM J. Res. Develop., 42, p.537, 1998.
[5-9] J. S. Gwag, C. G. Jhun, J. C. Kim, and T. -H. Yoon, J. Appl. Phys., 96, p.257, 2004.
[5-10] D. Dantsker, J. Kumar, and S. K. Tripathy, J. Appl. Phys., 89, p.4318, 2001.
[5-11] X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, Chem. Phys. Lett., 377, p..433, 2003.
[5-12] D. -S. Seo, H. -K. Kim, and H. -J. Jeon, Liq. Cryst., 28, p.313, 2001.
[5-13] A. Dyadyusha, A. Khizhnyak, T. Marussi, Y. Reznokov, O. Yaroshchak, V. Reshetnyak, W. Park, S. Kwon, H. Shin, and D. Kang, Mol. Cryst. Liq., 263, p.399, 1995.
[5-14] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, p.2155, 1992.
[5-15] M. Schadt, H. Seiberle, A. Shuster, and S. M. Kelly, Jpn. J. Appl. Phys., 34, p.3240, 1995.
[5-16] P. Chaudhari , J. Lacey, J. P. Doyle, E. Galiggan, S. C. Lien, A. C. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.H. Yang, C. Cai, J. L. Speidell, S. Purushothaman, J. Ritsko, M. G. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature, 411, p.56, 2001.
[5-17] P. Chaudhari, J. A. Lacey, S. -C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys., 37, p.L55, 1998.
[5-18] O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, Liq. Cryst., 31, p.859, 2004.
[5-19] K. Y. Wu, C. -H. Chen, C. -M. Yeh, J. Hwang, P. -C. Liu, C. -Y. Lee, C. -W. Chen, H. K. Wei, C. S. Kou, and C. -D. Lee, J. Appl. Phys., 98, p.083518, 2005.
[5-20] J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Physical Electron Division, Perkin-Elmer, 1992.
[5-21] J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, Science, 292, p.2299, 2001).
[5-22] T. Sakuhara, E. Tomita, H. Nakahara, and K. Fukuda, Thin Solid Films, 209, p.269, 1992.

[6-1] A. Schutze et al., IEEE Trans. Plasma Sci., 26, p.1685, 1998.
[6-2] H. Schmid, B. Kegel, W. Petasch, and G. Liebel, Proc. Joint 24th Int. Conf. Microelectronics (MIEL) and 32nd Symp.Devices Materials SD'96, Nova Gorcia, Slovenia, p.17, 1996.
[6-3] M.A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
[6-4] J. R. Roth, J. Rahel, X. Dai, and D. M. Sherman, J. Phys. D: Appl. Phys., 38, p.555, 2005.
[6-5] J. R. Roth, S. Nourgostar, and T. A. Bonds, IEEE Trans. Plasma Sci., 35, p.233, 2007.
[6-6] Marlon H. Guerra-Mutis, Carlos V Pelaez U, and Rafael Cabanzo H, Plasma Sources Sci. Technol., 12, p.165, 2003.
[6-7] L. J. Ward, W. C. E. Schofield, and J. P. S. Badyal, Langmuir, 19, p.2110, 2003.
[6-8] M. G. McCord, Y. J. Hwang, Y. Qiu, L. K. Canup, and M. A. Bourham, J. Appl. Polym. Sci., 88, p.2038, 2003.
[6-9] S. Guimond and M. R. Wertheimer, J. Appl. Polym. Sci., 94, p.1291, 2004.
[6-10] X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, and R. F. Hicks, Plasma Sources Sci. Technol., 14, p.412, 2005.
[6-11] H. W. Herrmann, I Henins, J. Park, and G. S. Selwyn, Phys. Plasma, 6, p.2284, 1999.
[6-12] T. Yamamoto, m. Okubo, N. Imail, and Y. Mori, Plasma Chem. Plasma Proc., 21, p.1, 2004.
[6-13] T. Terajima and H. Koinuma, Appl. Surf. Sci., 223, p.259, 2004.
[6-14] E. E. Kunhardt, IEEE Trans. Plasma Sci., 28, p.189, 2000.
[6-15] K. Hirai, T. Okada, T. Kaneko, R. Hatakeyama, and H. Yoshiki, J. Plasma Fusion Res., 81, p.417, 2005.
[6-16] U. Kogelschatz, IEEE Trans. Plasma Sci., 30, p.1400, 2002.
[6-17] L. Baars-Hibbe et al., Surf. Coat. Technol., 174-175, p.519, 2003.
[6-18] T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, J. Phys. D, 23, p.374, 1990.
[6-19] K. Inomata, H. Ohkubo, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 60, p.816, 1992.
[6-20] K. Inomata, H. K. Ha, K. A. Chaudhary, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 64, p.46, 1994.
[6-21] J. -H. Kim, G. Liu, and S. H. Kim, J. Mater. Chem., 16, p.977, 2006.
[6-22] J. Y. Jeong et al., J. Vac. Sci. Technol. A, 17, p.2581, 1999.
[6-23] J. Y. Jeong et al., Plasma Sources Sci. Technol., 7, p.282, 1998.
[6-24] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, Plasma Sources Sci. Technol., 7, p.286, 1998.
[6-25] A. Kuwabara, S. -I, Kuroda, and H. Kubota, Plasma Sci. Technol., 9, p.181, 2007.
[6-26] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, New York, 1991.
[6-27] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[6-28] Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, Boca Raton, FL: CRC Press, 1995.
[6-29] Z. Chen. IEEE Trans. Plasma Sci., 30, p.1992, 2002.
[6-30] T. Farouk, B. Farouk, A. Gutsol, and A. Fridman, Plasma Sources Sci. Technol., 17, p.1, 2008.
[6-31] Y. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D.: Appl. Phys., 35, p.751, 2002.
[6-32] J. Pons, E. Moreau, and G. Touchard, J. Phys. D: Appl. Phys., 38, p.3635, 2005.

[7-1] J. R. Roth, J. Rahel, X. Dai, and D. M. Sherman, J. Phys. D: Appl. Phys., 38, p.555, 2005.
[7-2] J. R. Roth, S. Nourgostar, and T. A. Bonds, IEEE Trans. Plasma Sci., 35, p.233, 2007.
[7-3] A. Schutze et al., IEEE Trans. Plasma Sci., 26, p.1685, 1998.
[7-4] Marlon H. Guerra-Mutis, Carlos V Pelaez U, and Rafael Cabanzo H, Plasma Sources Sci. Technol., 12, p.165, 2003.
[7-5] L. J. Ward, W. C. E. Schofield, and J. P. S. Badyal, Langmuir, 19, p.2110, 2003.
[7-6] M. G. McCord, Y. J. Hwang, Y. Qiu, L. K. Canup, and M. A. Bourham, J. Appl. Polym. Sci., 88, p.2038, 2003.
[7-7] S. Guimond and M. R. Wertheimer, J. Appl. Polym. Sci., 94, p.1291, 2004.
[7-8] X. Yang et al., Plasma Sources Sci. Technol., 14, p.412, 2005.
[7-9] H. W. Herrmann, I Henins, J. Park, and G. S. Selwyn, Phys. Plasma, 6, p.2284, 1999.
[7-10] T. Yamamoto, m. Okubo, N. Imail, and Y. Mori, Plasma Chem. Plasma Proc., 21, p.1, 2004.
[7-11] T. Terajima and H. Koinuma, Appl. Surf. Sci., 223, p.259, 2004.
[7-12] E. E. Kunhardt, IEEE Trans. Plasma Sci., 28, p.189, 2000.
[7-13] K. Hirai, T. Okada, T. Kaneko, R. Hatakeyama, and H. Yoshiki, J. Plasma Fusion Res., 81, p.417, 2005.
[7-14] U. Kogelschatz, IEEE Trans. Plasma Sci., 30, p.1400, 2002.
[7-15] L. Baars-Hibbe et al., Surf. Coat. Technol., 174-175, p.519, 2003.
[7-16] T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, J. Phys. D, 23, p.374, 1990.
[7-17] K. Inomata, H. Ohkubo, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 60, p.816, 1992.
[7-18] K. Inomata, H. K. Ha, K. A. Chaudhary, T. Hashimoto, and H. Koinuma, Appl. Phys. Lett., 64, p.46, 1994.
[7-19] J. -H. Kim, G. Liu, and S. H. Kim, J. Mater. Chem., 16, p.977, 2006.
[7-20] J. Y. Jeong et al., J. Vac. Sci. Technol. A, 17, p.2581, 1999.
[7-21] J. Y. Jeong et al., Plasma Sources Sci. Technol., 7, p.282, 1998.
[7-22] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, Plasma Sources Sci. Technol., 7, p.286, 1998.
[7-23] A. Kuwabara, S. -I, Kuroda, and H. Kubota, Plasma Sci. Technol., 9, p.181, 2007.
[7-24] NATO Advanced Study Institute, Diamond and diamond-like films and coatings, Plenum Press, New York, 1991.
[7-25] J. Robertson, Mater. Sci. Eng. Rep., 37, p.129, 2002.
[7-26] S. R. P. Silva, Properties of amorphous carbon, INSPEC Institution of Electrical Engineers, London, 2003.
[7-27] V. M. Elinson, V. V. Sleptsov, A. N. Laymin, V. V. Potraysay. L. N. Kostuychenko, and A. D. Moussina, Diamond Relat. Mater., 8, p.2103, 1999.
[7-28] H. Wang, M. -R. Shen, Z. -Y. Ning, C. Ye, and H. -S. Zhu, J. Mater. Res., 12, p.3102, 1997.
[7-29] B. R. Metha and E. A. Ogryzlo, Diamond Relat. Mater., 3, p.10, 1994.
[7-30] M. G. Beghi, A. C. Ferrai, K.B.K. Teo, J. Robertson, C. E. Bottani, A. Libassi, and B.K. Tanner, Appl. Phys. Lett., 81, p.3804, 2002.
[7-31] P. Zhang, B. K. Tay, C. Q. Sun, and S. P. Lau, J. Vac. Sci. Technol. A, 20, p.1390, 2002.
[7-32] S. J. Bull, Diamond Relat. Mater., 4, p.827, 1995.
[7-33] G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, Appl. Surf. Sci., 219, p.228, 2003.
[7-34] A. M. Baranov, A. E. Varfolomeev, A. A. Nefedov, M. Anderle, L. Calliari, G. Speranza, and N. Landini, Diamond Relat. Mater., 9, p.649, 2000.
[7-35] J. Levoska and S. Leppavuori, Appl. Surf. Sci., 86, p.180, 1995.
[7-36] H. Yasuda, Plasma Polymerization, Academic Press, 1985.
[7-37] K. Y. Wu, J. Appl. Phys., 101, p.023531, 2007.
[7-38] H. K. Wei, C. S. Kou, K. Y. Wu, and J. Hwang, Diamond Relat. Mater., 17, p.1639, 2008.
[7-39] O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van de Leest, and C. Leys, Surf. Coat. Technol., 142-144, p.474, 2001.
[7-40] N. Sano and M. Nobuzawa, Diamond Relat. Mater., 16, p.144, 2007.
[7-41] M. Zhao, T. G. Owano, and C. H. Kruger, Diamond Relat. Mater., 10, p.1565, 2001.
[7-42] J. Benedikt, K.G.Y. Letourneur, M. Wisse, D. C. Schram, and M. C. M. van de Sanden, Diamond Relat. Mater., 11, p.989, 2002.
[7-43] Y. Liao, C. H. Li, Z. Y. Ye, C. Chang, G. Z. Wang, and R.C. Fang, Diamond Relat. Mater., 9, p.1716, 2000.
[7-44] Gwénaëlle Le Dû, Natacha Celini, Faiza Bergaya, and Fabienne Poncin-Epaillard, Surf. Coat. Technol., 201, p.5815, 2007.
[7-45] R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra, Wiley, 1976.
[7-46] J. Chastain et al., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer corporation, Physical Electron Division, 1992
[7-47] G. Beamson, D. Briggs, High Resolution XPS of Organics Polymers, Wiley & Sons, Chichester, 1992.
[7-48] W. M. Gibbons, P. J. Shannon, S. T. Sun, andB. J. Swetlin, Nature, 351, p.49, 1991.
[7-49] P. Merel, et al., Appl. Sur. Sci., 136, p.105, 1998.
[7-50] D. Bourgion, S. Turgeon, and G.G. Ross, Thin Solid Films, 357, p.246, 1999.
[7-51] M. Ramm, et al., Thin Solid Films, 354, p.106, 1999.
[7-52] J. S. Chen et al., Dia. Relat. Mater., 10, p.2018, 2001.
[7-53] J. Filik, et al., Dia. Relat. Mater., 12, p.974, 2003.
[7-54] K. -H. Lee, et al., Dia. Relat. Mater., 13, p.507, 2004.
[7-55] S. Meskinis, et al., Appl. Sur. Sci., 249, p.295, 2005.
[7-56] J. S. Chen, et al., J. Appl. Phys., 89, p.7814, 2001.
[7-57] M. Rusop, et al., J. non-Crys. Solids, 351, p.3738, 2005.
[7-58] J. I. B. Wilson, et al., J. Elect. Spectr., 121, p.183, 2001.
[7-59] J.Schwan, S. Ulrich, and V. batori, J. Appl.Phys., 80, p.440, 1996.
[7-60] Marek W. Urban, Vibrational spectroscopy of molecules and macromolecules on surfaces, Wiley, 1993.
[7-61] Kazuo Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Wiley, 1997.
[7-62] George Socrates, Infrared and Raman characteristic group frequencies: tables and charts, Wiley, 2001.
[7-63] Daimay Lin-Vien et al., The Handbook of infrared and raman characteristic frequencies of organic molecules, Academic Press, 1991.

[7-64] B. Wang, J. Tang and F. Wang, Synth. Met., 18, p.323, 1987.
[7-65] A. P. Monkman and P. Adams, Synth. Met., 41, 891, 1991.
[7-66] J. Tauc, R. Grigorovici and A. Vancu, Physica Status Solidi, 15, p.627, 1966.
[7-67] D. G. McCulloch, D. R. McKenzie, and C. M. Goringe, Phys. Rev. B, 44, p.2349, 2000.
[7-68] G. Jungnickel, T. Frauenheim, D. Proezag, P. Blaudeck, and U. Stephan, Phys. Rev. B, 50, p.6709, 1994.
[7-69] C. W. Chen and J. Robertson, J. Non Cryst. Solids, 227/228, p.602, 1998.
[7-70] N. M. J. Conway et al., Diamond Rel. Mater., 9, p.765, 2000.
[7-71] R. H. Jarman, G. J. Ray, and R. W. Stadley, Appl. Phys. Lett., 49, p.1065, 1986.
[7-72] M. A. Tamor, W. C. Vassell, and K. R. Carduner, Appl. Phys. Lett., 58, p.592, 1991.
[7-73] M. A. Tamor and W.C. Vassell, J. Appl. Phys., 76, p.3823, 1994.
[7-74] K. Y. Wu, Liquid crystal alignment on amorphous carbon films with plasma treated M.S. Thesis, June, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *