帳號:guest(18.118.26.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳虹穎
作者(外文):Chen, Hung-Ying
論文名稱(中文):氮化鎵奈米柱之光學特性
論文名稱(外文):Optical properties of GaN nanorods
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學號:927303
出版年(民國):98
畢業學年度:97
語文別:英文
論文頁數:95
中文關鍵詞:氮化鎵奈米柱光學反射率偏極化光
外文關鍵詞:GaNnanorodopticalreflectivitypolarized photoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:306
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本論文討論利用分子束磊晶成長出的氮化鎵奈米柱之光學性質。利用分子束磊晶所成長出的氮化鎵奈米柱呈垂直於基板的排列,其單一的氮化鎵奈米柱可視為一個應力完全釋放的單晶結構,依據螢光光譜量測,氮化鎵奈米柱具有激子的發光特性且有很好的發光效率。此外,分析反射光譜可以推得氮化鎵奈米柱可效為一層低折射系數的介質,其適用範圍除了過去所報導過的吸收區域 (紫外光波段) 還包括了整個穿透區域 (可見光區)。除了整體的光學特性,也分析了單一的氮化鎵奈米柱的極性螢光的特性,在次波長的範圍下(30-90 nm)其線性極化的程度會和奈米柱直徑相關,這個現象可以用光場受材料的侷限來解釋,由於這個機制只和介電系數和材料尺度有關,我們認為這樣的極化特性也可以出現在其他的半導體材料上或者其他型式的光學量測上,例如電流或電場所激發的螢光。氮化鎵奈米柱除了保有氮化鎵的優點 (例如:可n 型和p 型參雜、良好的穩定性),其優秀的光學特性將可在未來的光電應用中扮演更重要的角色。
Based on our optical measurements results, we confirm that PAMBE-grown wurtzite GaN nanorods are completely relaxed, strain-free single crystals. The high emission efficiency and excitonic properties of GaN nanorods have been demonstrated. Moreover, vertically aligned GaN nanorod arrays can act as subwavelength low-refractive-index optical media in both transparent and opaque regions. We have also found that the optical confinement effects dominate the linearly polarized properties of GaN nanorods with diameters in the subwavelength regime of 30−90 nm. We believe that the polarized luminescence reported here for GaN can also be found for other semiconductor materials and for other optical measurements, such as electroluminescence and cathodoluminescence. Because of the superior material properties of GaN nanorods in terms of optical transparency, availability of n- and p-type conductivity, and excellent thermal and chemical stabilities, these results could have important implications for nanophotonics and optoelectronics applications.
Chapter 1 Introduction1.1 Growth of One-dimensional Nanostructures1.2 Optical Properties of GaN epilayers1.3 OutlineChapter 2 Eptaxial Growth and Optical Characterization System2.1 Introduction2.2 Molecular Beam Epitaxy (MBE)2.3 Photoluminescence (PL) and m-PL Systems2.4 Reflectivity Measurement SystemsChapter 3 Fundamental Properties of GaN nanorods3.1 Introduction3.2 Growth of GaN Nanorods on Si(111) by PA-MBE3.3 Structural Characterizations 3.4 Luminescence Properties of GaN nanorods3.5 Polarity and Chemical Etching of GaN Nanorods3.6 ConclusionChapter 4 Reflectivity Measurement 4.1 Introduction4.2 Reflectivity of GaN epilayers4.3 Simulation of reflectivity measurement of epilayers 4.4 Reflectivity of GaN nanorod4.5 Simulation of reflectivity measurement of nanorods 4.6 ConclusionChapter 5 Polarized Photoluminescence Measurement of Single GaN nanorod5.1 Introduction5.2 Manipulation of GaN Nanorods5.3 Polarized Photoluminescence Measurement5.4 Size Dependence of Polarized Photoluminescence5.5 Polarized Photoluminescence at Low Temperature5.6 ConclusionChapter 6 ConclusionsReference
[1] H. S. Nalwa, Handbook of Nanostructured Materials and nanotechnology (Academic Press, New York, 2000).
[2] V. M. Shalaev and M. Moskovits, Nanostructured Materials: Clusters, Composites, and Thin Films (American Chemical Society, Washington DC 1997).
[3] A. S. Edelstein and R. C. Cammarata, Synthesis, Properties, and Applications (Institute of Physics, Philadelphia, PA 1996).
[4] Z. L. Wang, Adv. Mater, 12, 1295 (2000).
[5] J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
[6] Y. Xia. P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).
[7] N. Wang, Y. Cai, and R. Q. Zhang, Mater. Sci. & Eng. R 60, 1 (2008).
[8] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
[9] H. Wang, G.S. Fischman, J. Appl. Phys. 76, 1557 (1994).
[10] L. Schubert, P. Werner, N.D. Zakharov, Appl. Phys. Lett. 84, 4968 (2004).
[11] S. Kodambaka, J. Tersoff, M.C. Reute, F.M. Ross, Science 316, 729 (2007).
[12] A.M. Morales, C.M. Lieber, Science 279, 208 (1998).
[13] D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J.Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998).
[14] P. Yang, MRS Bull. 30, 85 (2005).
[15] Y.F. Zhang, Y.H. Zhang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998).
[16] N.Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 73, 3902 (1998).
[17] Z.W. Pen, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001).
[18] Z.H.Wu, X.Y. Mei, D. Kim, M. Blumin, H.E. Ruda, Appl. Phys. Lett. 81, 5177 (2002).
[19] Y.F. Chan, X.F. Duan, S.K. Chan, I.K. Sou, X.X. Zhang, N.Wang, Appl. Phys. Lett. 83, 2665 (2003).
[20] L. Schubert, P.Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Go¨sele, Appl. Phys. Lett. 84, 4968 (2004).
[21] M.T. Bjo¨rk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).
[22] Y. Wu, and P. Yang, Chem. Mater. I2, 605 (2000).
[23] C. C. Chen, and C. C. Yeh, Adv. Mater. I2, 738 (2000).
[24] E. T. T. Jones, O. M. Chyan, and M. S. Wrighton, J. Am. Chem. Soc. 109, 5526 (1987).
[25] M. Walther, E. Kaplon, J. Christen, D. M. Hwang, and R. Bhat, Appl. Phys. Lett. 60, 521 (1992).
[26] G. Fasol, Science 280, 545 (1998).
[27] R. M. Penner, J. Phys. Chem. B106, 3339 (2002).
[28] C. R. Martin, Science 266, 1994 (1994).
[29] A. Despic, and V. P. Parkhutik, in Modern Aspects of Electrochemistry 20, Plenum Press, New York, Ch. 6. (1989).
[30] T. Gao, G. Meng, J. Zhang, S. Sun, L. Zhang, Appl. Phys. A 74, 403 (2002).
[31] H. Gao, Y. Xu, J. Hong, H. Liu, G. Yin, B. Li, C. Tie, Z. Xu, Adv. Mater. 13, 1393 (2001).
[32] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto and K. Kishino, J. Cryst. Growth 189/190, 138 (1998).
[33] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16 826 (2000).
[34] L.W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[35] Y. S. Park, S. H. Lee, J. E. Oh and T. W. Kang, J. Cryst. Growth 282, 313 (2005).
[36] B. Monemar, Semicond. Semimetals 50, 305 (1998).
[37] D. Volm, K. Oettinger, T. Streibl, D. Kovalev, M. Ben-Chorin, J. Diener, B. K. Meyer, J. Majewski, L. Eckey, A. Hoffmann, H. Amano, I. Akasaki, K. Hiramastu, and T. Detchprohm, Phys. Rev. B 53, 16543 (1996).
[38] A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).
[39] K. Kornitzer, T. Ebner, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, Phys. Rev. B 60, 1471 (1999).
[40] K. Cho, Phys. Rev. B 14, 4463 (1976).
[41] D. C. Reynolds, D .C. Look, B. Jogai, A. W. Saxler, S. S. Park, and J. Y. Hahn, Appl. Phys. Lett. 77, 2879 (2000).
[42] P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, Phys. Rev. B 64, 115201 (2001)
[43] P. Misra, O. Brandt, H. T. Grahn, H. Teisseyre, M. Siekacz, C. Skierbiszewski, and B. Lucznik, Appl. Phys. Lett. 91, 141903 (2007).
[44] M. A. Reshchikon and H. Morkoc, J. Appl. Phys. 97, 061301 (2005).
[45] S. Nakamura and G. Fosol, The Blue Laser Diode (Springer, Berlin, 1998).
[46] H. Morkoç, Nitride Semiconductors and Devices (Springer, Heidelberg, 1999).
[47] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).
[48] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000).
[49] M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
[50] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, S. I. Molina, A. M. Sánchez, F. J. Pacheco, R, García, J. Cryst. Growth 201/202, 296 (1999).
[51] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[52] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, J. Cryst. Growth 287, 522 (2006).
[53] L. Cerutti, J. Ristić, S. Fernández,-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Appl. Phys. Lett. 88, 213114 (2006).
[54] C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104 (2006).
[55] S. Luryi and E. Suhir, Appl. Phys. Lett. 49, 140 (1986).
[56] D. Zubia and S. D. Hersee, J. Appl. Phys. 85, 6492 (1999).
[57] K. Kusakabe, A. Kikuchi, and K. Kishino, J. Cryst. Growth. 237–239, 988 (2002).
[58] H.-M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater. 15, 567 (2003).
[59] A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
[60] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
[61] T. Detchprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Jpn. J. Appl. Phys. 31, L1454 (1992).
[62] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, Appl. Phys. Lett. 71, 2635 (1997).
[63] L.-W. Yin, Y. Bando, D. Golberg, M.-S. Li, Adv. Mater. 16, 1833 (2004).
[64] W. Hayes and R. Laudon, Scattering of Light by Crystals (Wiley, New York, 1978).
[65] S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, Appl. Phys. Lett. 87, 063109 (2005).
[66] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide. And K. Manabe, J. Appl. Phys. 75, 1098 (1994).
[67] P. Perlin, J. Camassel, W. Knap, T. Taliercio, J. C. Chervin, T. Suski, I. Grzegory, and S. Porowski, Appl. Phys. Lett. 67, 2524 (1995).
[68] H. Harima, H. Sakashita, and S. Nakashima, Mater. Sci. Forum 264, 1363 (1998).
[69] D. Wang, C. –C. Tin, J. R. Williams, M. Park, T. S. Park, C. M. Park, T. W. Kang, and W. –C. Yang, Appl. Phys. Lett. 87, 242105 (2005).
[70] M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
[71] M. Leroux, N. Granjean, B. Beaumount, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999).
[72] S. K. O’Leary, B. E. Foutz, M. S. Shur, L. F. Eastman, Appl. Phys. Lett. 87, 222103 (2005).
[73] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000).
[74] M. A. Reshchikov, D. Huang, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, S. S. Park, and K. Y. Lee, Physica B 367, 35 (2005).
[75] S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, Appl. Phys. Lett. 87, 203103 (2005).
[76] M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
[77] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, S. I. Molina, A. M. Sánchez, F. J. Pacheco, R, García, J. Crystal Growth 201, 296 (1999).
[78] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima,, Appl. Phys. Lett. 75 (1999) 3297.
[79] P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[80] S. J. Wilson and M. C. Hutley, Opt. Acta 29, 993 (1982).
[81] M. Srinivasarao, Chem. Rev. 99, 1935 (1999).
[82] M. E. Motamedi, W. H. Southwell, and W. J. Gunning,” Appl. Opt. 31, 4371 (1992).
[83] P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
[84] Y. Kanamori, K. Hane, H. Sai, and H. Yugami, Appl. Phys. Lett. 78, 142 (2001).
[85] D. E. Aspnes, Thin Solid Films 89, 249 (1982).
[86] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[87] D. R. Smith, J. B Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[88] J.-Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 5, 1385 (2005).
[89] J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, and S.-Y. Lin, Opt. Lett. 31, 601 (2006).
[90] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nature Photon. 1, 176 (2007).
[91] C.-H. Hsu, H.-C. Lo, C.-F. Chen, C. T. Wu, J.-S. Hwang, D. Das, J. Tsai, L.-C. Chen, and K.-H. Chen, Nano Lett. 4, 471 (2004).
[92] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotech. 2, 770 (2007).
[93] H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, Appl. Phys. Lett. 89, 243105 (2006), and references therein.
[94] E. F. Schubert, Light-Emitting Diodes, 2nd Edition (Cambridge University Press, Cambridge, 2006).
[95] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[96] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 84, 466 (2004).
[97] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004).
[98] A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, Appl. Phys. Lett. 88, 061124 (2006).
[99] J. Y. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, Appl. Phys. Lett. 88, 013501 (2006).
[100] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, Appl. Phys. Lett. 90, 203515 (2007).
[101] H.-M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater. 15, 567 (2003).
[102] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[103] A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
[104] A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, Proc. of SPIE 6129, 612905 (2006).
[105] K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, Proc. of SPIE 6473, 64730T (2007).
[106] a) G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, Appl. Phys. Lett.70 3209 (1997); the refractive index n was found to follow the Sellmeir-type dispersion relationship n2(l) = 2.272 + 304.72/(l2 - 294.02) with the incident photon energy below the fundamental band edge of wurtzite GaN. b) A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Appl. Phys. Lett.70 2790 (1997).
[107] T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, J. Appl. Phys. 82, 3528 (1997).
[108] H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).
[109] M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989).
[110] U. Bockelmann and G. Bastard, Phys. Rev. B 45, 1688 (1992).
[111] P. Ils, Ch. Greus, A. Forchel, V. D. Kulakocskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. B 51, 4272 (1995).
[112] T. Someya, H. Akiyama, and H. Sakaki, Phys. Rev. Lett. 74, 3664 (1995).
[113] H. Akiyama, T. Someya and H. Sakaki, Phys. Rev. B 53, R4229 (1996).
[114] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science, 293, 1455 (2001).
[115] J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, J. Phys. Chem. B, 107, 8816 (2003).
[116] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003).
[117] D. Kulik, H. Htoon, C. K. Shiha, and Y. Li, J. Appl. Phys. 95, 1056 (2004).
[118] C. X. Shan, Z. Liu, and S. K. Hark, Phys. Rev. B 74, 153402 (2006).
[119] P. C. Sercel and K. J. Vahala, Appl. Phys. Lett. 57, 545 (1990).
[120] P. C. Sercel and K. J. Vahala, Phys. Rev. B 44, 5681 (1991).
[121] C. R. McIntyre and L. J. Sham, Phys. Rev. B 45, 9443 (1992).
[122] M. P. Persson and H. Q. Xu, Phys. Rev. B 70, 161310(R) (2004).
[123] M. Califano and A. Zunger, Phys. Rev. B 70, 165317 (2004).
[124] A. V. Maslov and C. Z. Ning, Phys. Rev. B 72, 161310(R) (2005).
[125] H. E. Ruda and A. Shik, Phys. Rev. B 72, 115308 (2005).
[126] H. E. Ruda and A. Shik, J. Appl. Phys. 100, 024314 (2006).
[127] J. B. Schlager, N. A. Sanford, K. A. Bertness, J. M. Barker, A. Roshko, and P. T. Blanchard, Appl. Phys. Lett. 88, 213106 (2006).
[128] D. Kovalev, M. Ben Chorin, J. Diener, F. Koch, Al. L. Efros and M. Rosen, N. A. Gippius, and S. G. Tikhodeev, Appl. Phys. Lett. 67, 1585 (1995).
[129] Y. Kravtsova, U. Krull, S. F. Musikhin, L. Levina, H. E. Ruda, and A. Shik, Appl. Phys. Lett. 90, 083120 (2007).
[130] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998).
[131] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).
[132] V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Academic, New York, 1978).
[133] W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
[134] T. V. Shubina, T. Paskova, A. A. Toropov, S. V. Ivanov, and B. Monemar, Phys. Rev. B 65, 075212 (2002).
[135] T. Kawashima, H. Yoshikawa, S. Adachia, S. Fuke, and K. Ohtsuka, J. Appl. Phys. 82, 3528 (1992).
[136] M. A. Reshchikova, and H. Morkoç J. Appl. Phys. 97, 061301 (2005).
[137] H. Kawanishi, E. Niikura, M. Yamamoto, and S. Takeda, Appl. Phys. Lett. 89, 251107 (2006).
[138] S. Nakagawa, H. Tsujimura, K. Okamoto, M. Kubota, and H. Ohta, Appl. Phys. Lett. 91, 171110 (2007).
[139] P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, Phys. Rev. B 70, 035210 (2004).
[140] B. Gil and O. Briot, Phys. Rev. B 55, 2530-2534 (1997).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *