帳號:guest(3.144.242.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林吳宣煒
作者(外文):Lin Wu, Shiuan-Woei
論文名稱(中文):大腸桿菌硝基還原酶NfsB之鑑定、設計及其於硝基苯二氮平之代謝應用
論文名稱(外文):Characterization, Design and Application of Escherichia coli Nitroreductase NfsB in the Metabolism of Nitrobenzodiazepine
指導教授(中文):汪炳鈞
王惠鈞
指導教授(外文):Uang, Biing-Jiun
Wang, Andrew H.-J.
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:927438
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:118
中文關鍵詞:硝基苯二氮平藥物濫用或成癮氟硝西泮7-胺基氟硝西泮晶體結構合理化設計
外文關鍵詞:nitrobenzodiazepinedrug abuse or addictionNBDZ poisoningflunitrazepam7-aminoflunitrazepamnitroreductase NfsBcrystal structureflavin-containing reductaserational design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:122
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
硝基苯二氮平(Nitrobenzodiazepine; NBDZ)是一種鎮靜催眠藥物,主要用於治療焦慮和睡眠問題。過量服用NBDZ可能會導致嚴重的神經影響,特別是藥物濫用或成癮者。不幸的是,臨床上對於NBDZ中毒的治療存在一些缺點,如處方劑量過高之不良影響和戒斷症狀等。本研究的目的在於發現和開發新的候選藥劑,以提供NBDZ中毒時治療上的其他選擇。
首先,我們探討大鼠腸道內容物對於NBDZ的硝基還原反應,並確認腸內菌硝基還原酶在還原途徑上的角色。在厭氧條件下,我們發現氟硝西泮(flunitrazepam; FZ),一種NBDZ,可被空腸微菌叢顯著還原成尿液代謝物7-胺基氟硝西泮(7-aminoflunitrazepam; 7AFZ)。我們在大鼠空腸微菌叢中找到大腸桿菌第I型硝基還原酶NfsB (EC 1.5.1.34),並證實其參與FZ的硝基還原反應。
其次,我們以經NfsB晶體結構所設計之各種突變體探討FZ的硝基還原反應,並確認其活體內效用。相較於野生型酵素,NfsB-N71S/F124W活性位置發生構形變化,包括Trp124和Phe70側鏈的翻轉,以及Ser71和FMN之間氫鍵網絡的擴展。因此,NfsB-N71S/F124W活性位置口袋明顯大於野生型,這可能與有氧和無氧條件下7AFZ產量的增加有關。小鼠抗催眠研究顯示,相較於溶液組,NfsB-N71S/F124W處理組的睡眠時間減少50%,並發現在24小時後小鼠血清中仍存在50%以上的該酵素。
再者,我們根據所解出的NfsB結構探討人類和腸內菌中含黃素還原酶(flavin-containing reductase)的蛋白質結構。我們發現這些還原酶的黃素區內催化位置相似,可能提供體內NBDZ還原一類似環境。
總而言之,我們首次發現NfsB-N71S/F124W可有效對抗FZ引發之催眠作用,並提供未來以NfsB及其類似蛋白進行合理化設計之分子基礎。
Nitrobenzodiazepine (NBDZ) is a sedative-hypnotic drug used in the treatment of anxiety and sleep problems. Overdose of NBDZ may cause severe neurological effects, especially for people in drug abuse or addiction. Unfortunately, the clinical intervention for NBDZ poisoning exists some disadvantages such as high prescribing dosage and withdraw symptom. The purpose of this study is to discover and develop new candidate that may provide alternative remedy for NBDZ poisoning.
First, we investigate NBDZ nitroreduction in rat enteric contents and characterize the role of enterobacterial nitroreductase in the reductive pathway. In the jejunal microflora, flunitrazepam (FZ), an NBDZ, was demonstrated to be significantly reduced to its urinary metabolite 7-aminoflunitrazepam (7AFZ) under anaerobic condition. Escherichia coli type I nitroreductase NfsB (EC 1.5.1.34) was found in rat jejunal microflora and demonstrated participating in FZ nitroreduction.
Second, we investigate FZ nitroreduction by various mutants of NfsB designed from the solved crystal structure and characterize the in vivo potency. Conformational changes occurred in the active site of NfsB-N71S/F124W in contrast to the wild-type enzyme, including the flipping of Trp124 and Phe70 side chains as well as the extended hydrogen bond network between Ser71 and FMN. Thus, the active site pocket of NfsB-N71S/F124W was significantly larger than that of the wild-type, which may be correlated with the increased 7AFZ production under both aerobic and anaerobic conditions. Mouse anti-hypnosis study showed that compared to the vehicle group, 50% decrease of sleeping time was observed in the NfsB-N71S/F124W group with over 50% of enzymes still remained in the mice sera after 24 hours.
Third, we investigate the protein structures of human and enterobacteria flavin-containing reductases based on the solved NfsB structure. These reductases share conserved catalytic site in the flavin domains that may provide a similar environment for the reduction of NBDZ in the body.
Taken together, we demonstrate that for the first time NfsB-N71S/F124W may be used as an effective therapeutic agent for FZ-induced hypnosis and provide the molecular basis for rational design of NfsB and the like in the future.
Abstract ……………………………………………………………………………….i
Abbreviations …………………………………………………………………………v
Chapter 1 Introduction ………………………………………………………………..1
1.1 Nitrobenzodiazepine ………………………………………………………….1
1.2 Metabolism and Toxicity of NBDZs …………………………………………3
1.2.1 Flunitrazepam
1.2.2 Clonazepam and Meclonazepam
1.2.3 Nitrazepam and Nimetazepam
1.3 Reductive Metabolism of NBDZ ……………………………………………9
1.3.1 Hepatic NADPH-Cytochrome P450 Reductase
1.3.2 Enterobacteria Reductase
1.4 Aim of Study ……………………………………………………….………12
Chapter 2 Materials and Methods ……………………………………….…………14
2.1 Chemicals and Reagents …………………………………………..………..14
2.2 Identification of Nitroreductase in Rat ……………………………..………14
2.2.1 Animals
2.2.2 Preparation of Microsomal Membrane Fractions of Rat Liver, Jejunum and Jejunal Microflora
2.2.3 PCR Amplification of Bacterial Genes
2.2.4 SDS-PAGE and Western Blot Analysis
2.2.5 Enterobacteriaceae Screening
2.3 Reductive Metabolism of NBDZ ………………………………………….19
2.3.1 Nitroreduction of NBDZ
2.3.2 HPLC Analysis
2.3.3 Chemical and Immunoinhibition
2.3.4 Kinetic Analysis
2.4 Protein Study of Bacterial Nitroreductase ………………………………….21
2.4.1 Cloning, Expression and Purification of Nitroreductase
2.4.2 UV/Visible Spectrophotometry
2.4.3 Crystallization, Data Collection and Processing
2.4.4 Structure Determination and Model Refinement
2.5 In Vivo Characterization of NfsB ………………………………………….25
2.5.1 Disk Assay for FZ Sensitivity
2.5.2 Sleep-time Study
2.5.3 Direct Competitive ELISA assay of NfsB
2.6 Statistical Analysis …………………………………………………………27
Chapter 3 Results …………………………………………………………………..28
3.1 Involvement of Enterobacteria Nitroreductase in the Metabolism of Nitrobenzodiazepine ………………………………………………………..28
3.1.1 Nitroreduction of FZ in Rat Liver, Jejunum and Jujenal Microflora
3.1.2 Identification of E. coli Nitroreductase NfsB in Rat Jejunal Microflora
3.1.3 Inhibition of NfsB Nitroreductase Activity in Rat Jejunal Microflora
3.1.4 Kinetic Study of NfsB on NBDZ
3.1.5 Nitroreductase from the Selected Coliform Enterobacteria
3.2 Modification of Escherichia coli Nitroreductase NfsB in Elevating Its Reductase Activity toward NBDZ …………………………………………33
3.2.1 Crystal Structure of NfsB
3.2.2 Prediction and Identification of NfsB Mutants with Increased 7AFZ
3.2.3 Enlarged Active Site of NfsB Mutants
3.2.4 Structural Analysis of NfsB-N71S/F124W
3.2.5 Substrate Binding of NfsB-N71S/F124W
3.2.6 In Vivo Potency of NfsB-N71S/F124W
3.3 Potential Flavin-containing Reductase in the Detoxification of NBDZ ……………………………………………..………………………...39
3.3.1 Investigation of Possible Nitroreductase in the Body
3.3.2 Structural Approach of Possible Nitroreductase in the Body
3.3.3 Reduction of FZ from E. coli Nitroreductase NfsA and YdjA
Chapter 4 Discussion ………………………………………………………………..43
4.1 NBDZ is Reduced by Enterobacterial Nitroreductase ………………………43
4.1.1 Nitroreductase Activity in Jejunal Microflora
4.1.2 Bacterial NfsB Nitroreductases
4.2 Enhancement of NfsB Reductase Activity toward FZ ………………………48
4.2.1 Modification of NfsB
4.2.2 Extended Active Site Pocket of NfsB
4.2.3 Improved Substrate Accessibility on NfsB
4.2.4 In Vivo Efficacy of NfsB
4.3 The Existing Nitroreductase in the Body ……………………………………54
4.3.1 Human Nitroreductase
4.3.2 Enterobacterial Nitroreductase
4.3.3 E. coli Nitroreductase
Reference …………………………………………………………………………….60
Figures ……………………………………………………………………………….77
Tables ……………………………………………………………………………….108
Appendix …………………………………………………………………………...116
Publications ……………………………………………..………………………… 118
Reference

1. Childress SJ, Gluckman MI. 1,4-Benzodiazepines. J Pharm Sci 1964; 53:577-90.
2. Haefely WE. Central actions of benzodiazepines: general introduction. Br J Psychiatry 1978; 133:231-8.
3. Loew GH, Nienow JR, Poulsen M. Theoretical structure-activity studies of benzodiazepine analogues. Requirements for receptor affinity and activity. Mol Pharmacol 1984; 26(1):19-34.
4. Shader RI, Greenblatt DJ. Benzodiazepines: some aspects of their clinical pharmacology. Ciba Found Symp 1979; 74:141-55.
5. Robertson MD, Drummer OH. Postmortem distribution and redistribution of nitrobenzodiazepines in man. J Forensic Sci 1998; 43(1):9-13.
6. Mizuno K, Katoh M, Okumura H, et al. Metabolic activation of benzodiazepines by CYP3A4. Drug Metab Dispos 2009; 37(2):345-51.
7. Darragh A, Lambe R, Brick I, et al. Antagonism of the central effects of 3-methylclonazepam. Br J Clin Pharmacol 1982; 14(6):871-2.
8. Amir L, Waisman Y. Medical and toxicological aspects of drug facilitated sexual assault. Isr J Emerg Med 2006; 6(3):62-66.
9. Gambi F, Conti CM, Grimaldi MR, et al. Flunitrazepam: a benzodiazepine most used among drug abusers. Int J Immunopathol Pharmacol 1999; 12(3):157-9.
10. Lane SD, Cherek DR, Nouvion SO. Modulation of human risky decision making by flunitrazepam. Psychopharmacology (Berl) 2008; 196(2):177-88.
11. Pirnay S, Megarbane B, Decleves X, et al. Buprenorphine alters desmethylflunitrazepam disposition and flunitrazepam toxicity in rats. Toxicol Sci 2008; 106(1):64-73.
12. Kilicarslan T, Haining RL, Rettie AE, et al. Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4. Drug Metab Dispos 2001; 29(4 Pt 1):460-5.
13. Hesse LM, Venkatakrishnan K, von Moltke LL, et al. CYP3A4 is the major CYP isoform mediating the in vitro hydroxylation and demethylation of flunitrazepam. Drug Metab Dispos 2001; 29(2):133-40.
14. Saito H, Kobayashi H, Takeno S, et al. In vivo and in vitro studies on fetal toxicity of benzodiazepines in rats. Res Commun Chem Pathol Pharmacol 1986; 52(3):295-304.
15. De Silva JA, Puglisi CV, Munno N. Determination of clonazepam and flunitrazepam in blood and urine by electron-capture GLC. J Pharm Sci 1974; 63(4):520-7.
16. Ask K, Decologne N, Asare N, et al. Distribution of nitroreductive activity toward nilutamide in rat. Toxicol Appl Pharmacol 2004; 201(1):1-9.
17. Peterson FJ, Mason RP, Hovsepian J, et al. Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 1979; 254(10):4009-14.
18. Takeno S, Sakai T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 1991; 44(2):209-14.
19. Robertson MD, Drummer OH. Postmortem drug metabolism by bacteria. J Forensic Sci 1995; 40(3):382-6.
20. Wilson WR, Hicks KO, Pullen SM, et al. Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat Res 2007; 167(6):625-36.
21. Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004; 56(1):53-102.
22. Sarlauskas J, Nemeikaite-Ceniene A, Anusevicius Z, et al. Flavoenzyme-catalyzed redox cycling of hydroxylamino- and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Arch Biochem Biophys 2004; 425(2):184-92.
23. Anlezark GM, Melton RG, Sherwood RF, et al. The bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) -- I. Purification and properties of a nitroreductase enzyme from Escherichia coli -- a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem Pharmacol 1992; 44(12):2289-95.
24. Fukinaga M, Ishizawa K, Kamei C. Anticonvulsant properties of 1,4-benzodiazepine derivatives in amygdaloid-kindled seizures and their chemical structure-related anticonvulsant action. Pharmacology 1998; 57(5):233-41.
25. Bogusz MJ, Maier RD, Kruger KD, et al. Determination of flunitrazepam and its metabolites in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 1998; 713(2):361-9.
26. Druid H, Holmgren P, Ahlner J. Flunitrazepam: an evaluation of use, abuse and toxicity. Forensic Sci Int 2001; 122(2-3):136-41.
27. Berthault F, Kintz P, Mangin P. Simultaneous high-performance liquid chromatographic analysis of flunitrazepam and four metabolites in serum. J Chromatogr B Biomed Appl 1996; 685(2):383-7.
28. Poisnel G, Dhilly M, Le Boisselier R, et al. Comparison of five benzodiazepine-receptor agonists on buprenorphine-induced mu-opioid receptor regulation. J Pharmacol Sci 2009; 110(1):36-46.
29. Drummer OH, Syrjanen ML, Cordner SM. Deaths involving the benzodiazepine flunitrazepam. Am J Forensic Med Pathol 1993; 14(3):238-43.
30. Browne TR. Clonazepam: a review of a new anticonvulsant drug. Arch Neurol 1976; 33(5):326-32.
31. Lorizio A. Treatment of the epilepsy using clonazepam (RO 5-4023 - Rivotril). Riv Neurobiol 1972; 18(3-4):233-40.
32. Negrusz A, Bowen AM, Moore CM, et al. Deposition of 7-aminoclonazepam and clonazepam in hair following a single dose of Klonopin. J Anal Toxicol 2002; 26(7):471-8.
33. Gatzonis S, Karadimas P, Gatzonis S, et al. Clonazepam associated retinopathy. Eur J Ophthalmol 2003; 13(9-10):813-5.
34. Koczerginski D, Kennedy SH, Swinson RP. Clonazepam and lithium -- a toxic combination in the treatment of mania? Int Clin Psychopharmacol 1989; 4(3):195-9.
35. Witt DM, Ellsworth AJ, Leversee JH. Amiodarone-clonazepam interaction. Ann Pharmacother 1993; 27(12):1463-4.
36. Bittigau P, Sifringer M, Ikonomidou C. Antiepileptic drugs and apoptosis in the developing brain. Ann N Y Acad Sci 2003; 993:103-14.
37. Eschenhof E. Studies on the disposition of the anticonvulsant clonazepam in the organisms of rat, dog, and man. Arzneimittelforschung 1973; 23(3):390-400.
38. Sjo O, Hvidberg EF, Naestoft J, et al. Pharmacokinetics and side-effects of clonazepam and its 7-amino-metabolite in man. Eur J Clin Pharmacol 1975;8(3-4):249-54.
39. Ansseau M, Doumont A, Thiry D, et al. Initial study of methylclonazepam in generalized anxiety disorder. Evidence for greater power in the cross-over design. Psychopharmacol (Berl) 1985; 87(2):130-5.
40. Thibaut JP, Monteiro LM, Leite LC, et al. The effects of 3-methylclonazepam on Schistosoma mansoni musculature are not mediated by benzodiazepine receptors. Eur J Pharmacol 2009; 606(1-3):9-16.
41. O'Boyle C, Lambe R, Darragh A. Central effects in man of the novel schistosomicidal benzodiazepine meclonazepam. Eur J Clin Pharmacol 1985; 29(1):105-8.
42. Davies C, Levine S. A controlled comparison of nitrazepam ('mogadon') with sodium amylobarbitone as a sleep-inducing agent. Br J Psychiatry 1967; 113(502):1005-8.
43. Berman AJ, Pomina AC, Nepomuceno NR. Anticonvulsant properties of nitrazepam (mogadon). Electroencephalogr Clin Neurophysiol 1968; 24(2):187.
44. Giri AK, Banerjee S. Genetic toxicology of four commonly used benzodiazepines: a review. Mutat Res 1996; 340(2-3):93-108.
45. Takeno S, Hirano Y, Kitamura A, et al. Comparative developmental toxicity and metabolism of nitrazepam in rats and mice. Toxicol Appl Pharmacol 1993; 121(2):233-8.
46. Kishi K, Kanamori S, Maruyama T, et al. Potential parameters of male reproductive toxicity: reproductive performance, histopathology and sperm evaluation in SD rats given nitrazepam. J Toxicol Sci 1995; 20(3):329-39.
47. Saito H, Kobayashi H, Takeno S, et al. Fetal toxicity of benzodiazepines in rats. Res Commun Chem Pathol Pharmacol 1984; 46(3):437-47.
48. Yanagi Y, Haga F, Endo M, et al. Comparative metabolic study of nimetazepam and its desmethyl derivative (nitrazepam) in rats. Xenobiotica 1975; 5(4):245-7.
49. Kuang H, Li Q, Shen C, et al. A highly sensitive method for the determination of 7-aminonitrazepam, a metabolite of nitrazepam, in human urine using high-performance electrospray liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2009; 23(7):740-4.
50. Kangas L. Determination of nitrazepam and its main metabolites in urine by gas--liquid chromatography: use of electron capture and nitrogen-selective detectors. J Chromatogr 1979; 172:273-8.
51. Yanagi Y, Haga F, Endo M, et al. Comparative metabolic study of nimetazepam and its desmethyl derivative (nitrazepam) in dogs. Xenobiotica 1976; 6(2):101-12.
52. Sumirtapura YC, Aubert C, Coassolo P, et al. Determination of 7-amino-flunitrazepam (Ro 20-1815) and 7-amino-desmethylflunitrazepam (Ro 5-4650) in plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr 1982; 232(1):111-8.
53. Petters I, Peng DR, Rane A. Quantitation of clonazepam and its 7-amino and 7-acetamido metabolites in plasma by high-performance liquid chromatography. J Chromatogr 1984; 306:241-8.
54. Elmer GW, Remmel RP. Role of the intestinal microflora in clonazepam metabolism in the rat. Xenobiotica 1984; 14(11):829-40.
55. Jonen HG. Enhancement of reductive metabolism of p-nitrobenzoate and nitrazepam in isolated perfused rat liver by ethanol. Drug Metab Dispos 1979; 7(3):176-80.
56. Hewick DS, Shaw V. The importance of the intestinal microflora in nitrazepam metabolism in the rat. Br J Pharmacol 1978; 62(3):427P.
57. Seree EJ, Pisano PJ, Placidi M, et al. Identification of the human and animal hepatic cytochromes P450 involved in clonazepam metabolism. Fundam Clin Pharmacol 1993; 7(2):69-75.
58. Berson A, Wolf C, Berger V, et al. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J Pharmacol Exp Ther 1991; 257(2):714-9.
59. Peng FC, Chaing HH, Tang SH, et al. NADPH-cytochrome P-450 reductase is involved in flunitrazepam reductive metabolism in Hep G2 and Hep 3B cells. J Toxicol Environ Health A 2004; 67(2):109-24.
60. Takeno S, Sakai T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 1991; 44:209-14.
61. Alvares AP, Mannering GJ. Two-substrate kinetics of drug-metabolizing enzyme systems of hepatic microsomes. Mol Pharmacol 1970; 6:206-12.
62. Tsen HY, Lin CK, Chi WR. Development and use of 16S rRNA gene targeted PCR primers for the identification of Escherichia coli cells in water. J Appl Microbiol 1998; 85:554-60.
63. Bej AK, Steffan RJ, DiCesare J, et al. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl Environ Microbiol 1990; 56:307-14.
64. Amit-Romach E, Uni Z, Cheled S, et al. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J Nutr Biochem 2009; 20:70-7.
65. Guengerich FP, Wang P, Davidson NK. Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits, and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 1982; 21:1698-706.
66. Rafil F, Franklin W, Heflich RH, et al. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl Environ Microbiol 1991; 57:962-8.
67. Otwinowski Z, and Minor W, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997; 276:307-326.
68. Race PR, Lovering AL, Green RM, et al. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J Biol Chem 2005; 280:13256-64.
69. Haynes CA, Koder RL, Miller AF, et al. Structures of nitroreductase in three states: effects of inhibitor binding and reduction. J Biol Chem 2002; 277:11513-20.
70. Brunger AT, Adams PD, Clore GM, et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998; 54:905-921.
71. Parkinson GN, Skelly JV, Neidle S. Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug-activating enzyme. J Med Chem 2000; 43:3624-31.
72. Kleywegt GJ, Jones TA. Database in protein crystallography. Acta Crystallogr D Biol Crystallogr 1998; 54:1119-1131.
73. McRee, D. E. XtalView/Xfit –A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 1999; 125:156-165.
74. Olekhnovich, IN, Goodwin A, Hoffman PS. Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori. FEBS J 2009; 276:3354-3364.
75. Lemmer B. The sleep-wake cycle and sleeping pills. Physiol Behav 2007; 90:285-293.
76. Kolosova, AY, Shim WB, Yang ZY, et al. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1 stabilization of ELISA kit components and application to grain samples. Anal Bioanal Chem 2006; 384:286-294.
77. LinWu SW, Syu CJ, Chen YL, et al. Characterization of Escherichia coli nitroreductase NfsB in the metabolism of nitrobenzodiazepines. Biochem Pharmacol 2009; 78(1):96-103.
78. Pavelka A, Chovancova E, Damborsky J. HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res 2009; 37:W376-383.
79. Dundas J, Ouyang Z, Tseng J, et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006; 34:W116-118.
80. Zhao Q, Modi S, Smith G, et al. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 Å resolution. Protein Sci 1999; 8(2):298-306.
81. Xia C, Misra I, Iyanagi T, et al. Regulation of interdomain interactions by calmodulin in inducible nitric oxide synthase. J Biol Chem 2009; 284(44):30708-17.
82. Skelly JV, Sanderson MR, Suter DA, et al. Crystal structure of human DT-diaphorase: a model for interaction with the cytotoxic prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954). J Med Chem 1999; 42(21):4325-30.
83. Choi JW, Lee J, Nishi K, et al. Crystal structure of a minimal nitroreductase, ydjA, from Escherichia coli K12 with and without FMN cofactor. J Mol Biol 2008; 377(1):258-67.
84. Kobori T, Sasaki H, Lee WC, et al. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem 2001; 276(4):2816-23.
85. Holm L, Kaariainen S, Rosenstrom P, et al. Searching protein structure databases with DaliLite v.3. Bioinformatics 2008; 24(23):2780-1.
86. Roldan MD, Perez-Reinado E, Castillo F, et al. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32(3):474-500.
87. Bianchet MA, Erdemli SB, Amzel LM. Structure, function, and mechanism of cytosolic quinone reductases. Vitam Horm 2008; 78:63-84.
88. Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 2004; 56(1):53-102.
89. Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276(15):3959-74.
90. Kolbeck B, May P, Schmidt-Goenner T, et al. Connectivity independent protein-structure alignment: a hierarchical approach. BMC Bioinformatics 2006; 7:510.
91. Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 2003; 69:3448-55.
92. Chang J, Chadwick RW, Allison JC, et al. Microbial succession and intestinal enzyme activities in the developing rat. J Appl Bacteriol 1994; 77:709-18.
93. Rowland IR. Factors affecting metabolic activity of the intestinal microflora. Drug Metab Rev 1988; 19:243-61.
94. Orna MV, Mason RP. Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J Biol Chem 1989; 264:12379-84.
95. Emptage CD, Knox RJ, Danson MJ, et al. Nitroreductase from Bacillus licheniformis: a stable enzyme for prodrug activation. Biochem Pharmacol 2009; 77:21-9.
96. Anlezark GM, Melton RG, Sherwood RF, et al. Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharmacol 1995; 50:609-18.
97. Rafii F, Cerniglia CE. Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl Environ Microbiol 1993; 59:1731-4.
98. Lovering AL, Hyde EI, Searle PF, et al. The structure of Escherichia coli nitroreductase complexed with nicotinic acid: three crystal forms at 1.7 Å, 1.8 Å and 2.4 Å resolution. J Mol Biol 2001; 309:203-13.
99. Watanabe M, Nishino T, Takio K, et al. Purification and characterization of wild-type and mutant "classical" nitroreductases of Salmonella typhimurium. J Biol Chem 1998; 273:23922-8.
100. Choi JW, Lee J, Nishi K, et al. Crystal structure of a minimal nitroreductase, ydjA, from Escherichia coli K12 with and without FMN cofactor. J Mol Biol 2008; 377:258-67.
101. Woods JH, Winger G. Abuse liability of flunitrazepam. J Clin Psychopharmacol 1997; 17:1S-57S.
102. Grove JI, Lovering AL, Guise C, et al. Generation of Escherichia coli nitroreductase mutants conferring improved cell sensitization to the prodrug CB1954. Cancer Res 2003; 63:5532-5537.
103. Docampo R, Mason RP, Mottley C, et al. Generation of free radicals induced by nifurtimox in mammalian tissues. J Biol Chem 1981; 256:10930-10933.
104. Betten DP, Vohra RB, Cook MD, et al. Antidote use in the critically ill poisoned patient. J Intensive Care Med 2006; 21:255-277.
105. Spivey WH. Flumazenil and seizures: analysis of 43 cases. Clin Ther 1992; 14:292-305.
106. Kaplan SA, Alexander K, Jack ML, et al. Pharmacokinetic profiles of clonazepam in dog and humans and of flunitrazepam in dog. J Pharm Sci 1974; 63(4):527-32.
107. Moriya F, Hashimoto Y. Tissue distribution of nitrazepam and 7-aminonitrazepam in a case of nitrazepam intoxication. Forensic Sci Int 2003; 131(2-3):108-12.
108. Moreno SN, Mason RP, Docampo R. Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase. J Biol Chem 1984; 259(10):6298-305.
109. Mason RP, Holtzman JL. The mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry 1975; 14(8):1626-32.
110. Abou-Khalil S, Abou-Khalil WH, Yunis AA. Identification of a mitochondrial p-dinitrobenzene reductase activity in rat liver. Pharmacology 1985; 31(6):301-8.
111. Bartosek I, Mussini E, Saronio C, et al. Studies on nitrazepam reduction in vitro. Eur J Pharmacol 1970; 11(2):249-53.
112. Koder RL, Haynes CA, Rodgers ME, et al. Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry 2002; 41(48):14197-205.
113. Smyth GE, Orsi BA. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain. Biochem J 1989; 257(3):859-63.
114. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 2005; 26(4):190-5.
115. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418(3):291-6.
116. Chandor A, Dijols S, Ramassamy B, et al. Metabolic activation of the antitumor drug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by NO synthases. Chem Res Toxicol 2008; 21(4):836-43.
117. Ask K, Dijols S, Giroud C, et al. Reduction of nilutamide by NO synthases: implications for the adverse effects of this nitroaromatic antiandrogen drug. Chem Res Toxicol 2003; 16(12):1547-54.
118. Vella F, Ferry G, Delagrange P, et al. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 2005; 71(1-2):1-12.
119. Graves PR, Kwiek JJ, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 2002; 62(6):1364-72.
120. Dinkova-Kostova AT, Talalay P. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic Biol Med 2000; 29(3-4):231-40.
121. Knox RJ, Jenkins TC, Hobbs SM, et al. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy. Cancer Res 2000; 60(15):4179-86.
122. Jamieson D, Tung AT, Knox RJ, et al. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor. Br J Cancer 2006; 95(9):1229-33.
123. Knox RJ, Boland MP, Friedlos F, et al. The nitroreductase enzyme in Walker cells that activates 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) to 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide is a form of NAD(P)H dehydrogenase (quinone) (EC 1.6.99.2). Biochem Pharmacol 1988; 37(24):4671-7.
124. Barak Y, Thorne SH, Ackerley DF, et al. New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution. Mol Cancer Ther 2006; 5(1):97-103.
125. Zenno S, Koike H, Kumar AN, et al. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 1996; 178(15):4508-14.
126. Hall PM, Stupans I, Burgess W, et al. Immunohistochemical localization of NADPH-cytochrome P450 reductase in human tissues. Carcinogenesis 1989; 10(3):521-30.
127. Pan SS, Andrews PA, Glover CJ, et al. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J Biol Chem 1984; 259(2):959-66.
128. Chat M, Bayol-Denizot C, Suleman G, et al. Drug metabolizing enzyme activities and superoxide formation in primary and immortalized rat brain endothelial cells. Life Sci 1998; 62(2):151-63.
129. Schmalix WA, Lang D, Schneider A, et al. Stable expression and coexpression of human cytochrome P450 oxidoreductase and cytochrome P450 1A2 in V79 Chinese hamster cells: sensitivity to quinones and biotransformation of 7-alkoxyresorufins and triazines. Drug Metab Dispos 1996; 24(12):1314-9.
130. Berger V, Berson A, Wolf C, et al. Generation of free radicals during the reductive metabolism of nilutamide by lung microsomes: possible role in the development of lung lesions in patients treated with this anti-androgen. Biochem Pharmacol 1992; 43(3):654-7.
131. Navarro A, Boveris A. Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 2008; 60(13-14):1534-44.
132. Garner AP, Paine MJ, Rodriguez-Crespo I, et al. Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents. Cancer Res 1999; 59(8):1929-34.
133. Jiang HB, Ichikawa M, Furukawa A, et al. Reductive activation of mitomycin C by neuronal nitric oxide synthase. Biochem Pharmacol 2000; 60(4):571-9.
134. Kobzik L, Bredt DS, Lowenstein CJ, et al. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 1993; 9(4):371-7.
135. Bachmann S, Bosse HM, Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 1995; 268(5 Pt 2):F885-98.
136. Pou S, Pou WS, Bredt DS, et al. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 1992; 267(34):24173-6.
137. Geller DA, Lowenstein CJ, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A 1993; 90(8):3491-5.
138. Terenghi G, Riveros-Moreno V, Hudson LD, et al. Immunohistochemistry of nitric oxide synthase demonstrates immunoreactive neurons in spinal cord and dorsal root ganglia of man and rat. J Neurol Sci 1993; 118(1):34-7.
139. Lowenstein CJ, Glatt CS, Bredt DS, et al. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 1992; 89(15):6711-5.
140. Ozuyaman B, Grau M, Kelm M, et al. RBC NOS: regulatory mechanisms and therapeutic aspects. Trends Mol Med 2008; 14(7):314-22.
141. Joseph P, Long DJ, Klein-Szanto AJ, et al. Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 2000; 60(2):207-14.
142. Jamieson D, Tung AT, Knox RJ, et al. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor. Br J Cancer 2006; 95(9):1229-33.
143. Liao S, Dulaney JT, Williams-Ashman HG. Purification and properties of a flavoprotein catalyzing the oxidation of reduced ribosyl nicotinamide. J Biol Chem 1962; 237:2981-7.
144. Gao D, Narasimhan DL, Macdonald J, et al. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol Pharmacol 2009; 75(2):318-23.
145. Vass SO, Jarrom D, Wilson WR, et al. E. coli NfsA: an alternative nitroreductase for prodrug activation gene therapy in combination with CB1954. Br J Cancer 2009; 100(12):1903-11.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *